The OurWoldInData dataset includes country-level testing, deaths, and confirmed cases for most countries in the world.

owid_data()

Value

a data.frame

References

Max Roser, Hannah Ritchie, Esteban Ortiz-Ospina and Joe Hasell (2020) - "Coronavirus Pandemic (COVID-19)". Published online at OurWorldInData.org. Retrieved from: 'https://ourworldindata.org/coronavirus'

Author

Sean Davis seandavi@gmail.com

Examples

res = owid_data()
colnames(res)
#>  [1] "iso3c"                                  
#>  [2] "continent"                              
#>  [3] "country"                                
#>  [4] "date"                                   
#>  [5] "confirmed"                              
#>  [6] "new_cases"                              
#>  [7] "deaths"                                 
#>  [8] "new_deaths"                             
#>  [9] "total_cases_per_million"                
#> [10] "new_cases_per_million"                  
#> [11] "total_deaths_per_million"               
#> [12] "new_deaths_per_million"                 
#> [13] "reproduction_rate"                      
#> [14] "icu_patients"                           
#> [15] "icu_patients_per_million"               
#> [16] "hosp_patients"                          
#> [17] "hosp_patients_per_million"              
#> [18] "weekly_icu_admissions"                  
#> [19] "weekly_icu_admissions_per_million"      
#> [20] "weekly_hosp_admissions"                 
#> [21] "weekly_hosp_admissions_per_million"     
#> [22] "tests"                                  
#> [23] "new_tests"                              
#> [24] "total_tests_per_thousand"               
#> [25] "new_tests_per_thousand"                 
#> [26] "positive_rate"                          
#> [27] "tests_per_case"                         
#> [28] "tests_units"                            
#> [29] "total_vaccinations"                     
#> [30] "people_vaccinated"                      
#> [31] "people_fully_vaccinated"                
#> [32] "total_boosters"                         
#> [33] "new_vaccinations"                       
#> [34] "total_vaccinations_per_hundred"         
#> [35] "people_vaccinated_per_hundred"          
#> [36] "people_fully_vaccinated_per_hundred"    
#> [37] "total_boosters_per_hundred"             
#> [38] "stringency_index"                       
#> [39] "population"                             
#> [40] "population_density"                     
#> [41] "median_age"                             
#> [42] "aged_65_older"                          
#> [43] "aged_70_older"                          
#> [44] "gdp_per_capita"                         
#> [45] "extreme_poverty"                        
#> [46] "cardiovasc_death_rate"                  
#> [47] "diabetes_prevalence"                    
#> [48] "female_smokers"                         
#> [49] "male_smokers"                           
#> [50] "handwashing_facilities"                 
#> [51] "hospital_beds_per_thousand"             
#> [52] "life_expectancy"                        
#> [53] "human_development_index"                
#> [54] "excess_mortality_cumulative_absolute"   
#> [55] "excess_mortality_cumulative"            
#> [56] "excess_mortality"                       
#> [57] "excess_mortality_cumulative_per_million"

head(res)
#>    iso3c continent     country       date confirmed new_cases deaths new_deaths
#> 1:   AFG      Asia Afghanistan 2020-02-24         5         5     NA         NA
#> 2:   AFG      Asia Afghanistan 2020-02-25         5         0     NA         NA
#> 3:   AFG      Asia Afghanistan 2020-02-26         5         0     NA         NA
#> 4:   AFG      Asia Afghanistan 2020-02-27         5         0     NA         NA
#> 5:   AFG      Asia Afghanistan 2020-02-28         5         0     NA         NA
#> 6:   AFG      Asia Afghanistan 2020-02-29         5         0     NA         NA
#>    total_cases_per_million new_cases_per_million total_deaths_per_million
#> 1:                   0.126                 0.126                       NA
#> 2:                   0.126                 0.000                       NA
#> 3:                   0.126                 0.000                       NA
#> 4:                   0.126                 0.000                       NA
#> 5:                   0.126                 0.000                       NA
#> 6:                   0.126                 0.000                       NA
#>    new_deaths_per_million reproduction_rate icu_patients
#> 1:                     NA                NA           NA
#> 2:                     NA                NA           NA
#> 3:                     NA                NA           NA
#> 4:                     NA                NA           NA
#> 5:                     NA                NA           NA
#> 6:                     NA                NA           NA
#>    icu_patients_per_million hosp_patients hosp_patients_per_million
#> 1:                       NA            NA                        NA
#> 2:                       NA            NA                        NA
#> 3:                       NA            NA                        NA
#> 4:                       NA            NA                        NA
#> 5:                       NA            NA                        NA
#> 6:                       NA            NA                        NA
#>    weekly_icu_admissions weekly_icu_admissions_per_million
#> 1:                    NA                                NA
#> 2:                    NA                                NA
#> 3:                    NA                                NA
#> 4:                    NA                                NA
#> 5:                    NA                                NA
#> 6:                    NA                                NA
#>    weekly_hosp_admissions weekly_hosp_admissions_per_million tests new_tests
#> 1:                     NA                                 NA    NA        NA
#> 2:                     NA                                 NA    NA        NA
#> 3:                     NA                                 NA    NA        NA
#> 4:                     NA                                 NA    NA        NA
#> 5:                     NA                                 NA    NA        NA
#> 6:                     NA                                 NA    NA        NA
#>    total_tests_per_thousand new_tests_per_thousand positive_rate tests_per_case
#> 1:                       NA                     NA            NA             NA
#> 2:                       NA                     NA            NA             NA
#> 3:                       NA                     NA            NA             NA
#> 4:                       NA                     NA            NA             NA
#> 5:                       NA                     NA            NA             NA
#> 6:                       NA                     NA            NA             NA
#>    tests_units total_vaccinations people_vaccinated people_fully_vaccinated
#> 1:                             NA                NA                      NA
#> 2:                             NA                NA                      NA
#> 3:                             NA                NA                      NA
#> 4:                             NA                NA                      NA
#> 5:                             NA                NA                      NA
#> 6:                             NA                NA                      NA
#>    total_boosters new_vaccinations total_vaccinations_per_hundred
#> 1:             NA               NA                             NA
#> 2:             NA               NA                             NA
#> 3:             NA               NA                             NA
#> 4:             NA               NA                             NA
#> 5:             NA               NA                             NA
#> 6:             NA               NA                             NA
#>    people_vaccinated_per_hundred people_fully_vaccinated_per_hundred
#> 1:                            NA                                  NA
#> 2:                            NA                                  NA
#> 3:                            NA                                  NA
#> 4:                            NA                                  NA
#> 5:                            NA                                  NA
#> 6:                            NA                                  NA
#>    total_boosters_per_hundred stringency_index population population_density
#> 1:                         NA             8.33   39835428             54.422
#> 2:                         NA             8.33   39835428             54.422
#> 3:                         NA             8.33   39835428             54.422
#> 4:                         NA             8.33   39835428             54.422
#> 5:                         NA             8.33   39835428             54.422
#> 6:                         NA             8.33   39835428             54.422
#>    median_age aged_65_older aged_70_older gdp_per_capita extreme_poverty
#> 1:       18.6         2.581         1.337       1803.987              NA
#> 2:       18.6         2.581         1.337       1803.987              NA
#> 3:       18.6         2.581         1.337       1803.987              NA
#> 4:       18.6         2.581         1.337       1803.987              NA
#> 5:       18.6         2.581         1.337       1803.987              NA
#> 6:       18.6         2.581         1.337       1803.987              NA
#>    cardiovasc_death_rate diabetes_prevalence female_smokers male_smokers
#> 1:               597.029                9.59             NA           NA
#> 2:               597.029                9.59             NA           NA
#> 3:               597.029                9.59             NA           NA
#> 4:               597.029                9.59             NA           NA
#> 5:               597.029                9.59             NA           NA
#> 6:               597.029                9.59             NA           NA
#>    handwashing_facilities hospital_beds_per_thousand life_expectancy
#> 1:                 37.746                        0.5           64.83
#> 2:                 37.746                        0.5           64.83
#> 3:                 37.746                        0.5           64.83
#> 4:                 37.746                        0.5           64.83
#> 5:                 37.746                        0.5           64.83
#> 6:                 37.746                        0.5           64.83
#>    human_development_index excess_mortality_cumulative_absolute
#> 1:                   0.511                                   NA
#> 2:                   0.511                                   NA
#> 3:                   0.511                                   NA
#> 4:                   0.511                                   NA
#> 5:                   0.511                                   NA
#> 6:                   0.511                                   NA
#>    excess_mortality_cumulative excess_mortality
#> 1:                          NA               NA
#> 2:                          NA               NA
#> 3:                          NA               NA
#> 4:                          NA               NA
#> 5:                          NA               NA
#> 6:                          NA               NA
#>    excess_mortality_cumulative_per_million
#> 1:                                      NA
#> 2:                                      NA
#> 3:                                      NA
#> 4:                                      NA
#> 5:                                      NA
#> 6:                                      NA

dplyr::glimpse(res)
#> Rows: 184,751
#> Columns: 57
#> $ iso3c                                   <chr> "AFG", "AFG", "AFG", "AFG", "A…
#> $ continent                               <chr> "Asia", "Asia", "Asia", "Asia"…
#> $ country                                 <chr> "Afghanistan", "Afghanistan", …
#> $ date                                    <date> 2020-02-24, 2020-02-25, 2020-…
#> $ confirmed                               <dbl> 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, …
#> $ new_cases                               <dbl> 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
#> $ deaths                                  <dbl> NA, NA, NA, NA, NA, NA, NA, NA…
#> $ new_deaths                              <dbl> NA, NA, NA, NA, NA, NA, NA, NA…
#> $ total_cases_per_million                 <dbl> 0.126, 0.126, 0.126, 0.126, 0.…
#> $ new_cases_per_million                   <dbl> 0.126, 0.000, 0.000, 0.000, 0.…
#> $ total_deaths_per_million                <dbl> NA, NA, NA, NA, NA, NA, NA, NA…
#> $ new_deaths_per_million                  <dbl> NA, NA, NA, NA, NA, NA, NA, NA…
#> $ reproduction_rate                       <dbl> NA, NA, NA, NA, NA, NA, NA, NA…
#> $ icu_patients                            <dbl> NA, NA, NA, NA, NA, NA, NA, NA…
#> $ icu_patients_per_million                <dbl> NA, NA, NA, NA, NA, NA, NA, NA…
#> $ hosp_patients                           <dbl> NA, NA, NA, NA, NA, NA, NA, NA…
#> $ hosp_patients_per_million               <dbl> NA, NA, NA, NA, NA, NA, NA, NA…
#> $ weekly_icu_admissions                   <dbl> NA, NA, NA, NA, NA, NA, NA, NA…
#> $ weekly_icu_admissions_per_million       <dbl> NA, NA, NA, NA, NA, NA, NA, NA…
#> $ weekly_hosp_admissions                  <dbl> NA, NA, NA, NA, NA, NA, NA, NA…
#> $ weekly_hosp_admissions_per_million      <dbl> NA, NA, NA, NA, NA, NA, NA, NA…
#> $ tests                                   <dbl> NA, NA, NA, NA, NA, NA, NA, NA…
#> $ new_tests                               <dbl> NA, NA, NA, NA, NA, NA, NA, NA…
#> $ total_tests_per_thousand                <dbl> NA, NA, NA, NA, NA, NA, NA, NA…
#> $ new_tests_per_thousand                  <dbl> NA, NA, NA, NA, NA, NA, NA, NA…
#> $ positive_rate                           <dbl> NA, NA, NA, NA, NA, NA, NA, NA…
#> $ tests_per_case                          <dbl> NA, NA, NA, NA, NA, NA, NA, NA…
#> $ tests_units                             <chr> "", "", "", "", "", "", "", ""…
#> $ total_vaccinations                      <dbl> NA, NA, NA, NA, NA, NA, NA, NA…
#> $ people_vaccinated                       <dbl> NA, NA, NA, NA, NA, NA, NA, NA…
#> $ people_fully_vaccinated                 <dbl> NA, NA, NA, NA, NA, NA, NA, NA…
#> $ total_boosters                          <dbl> NA, NA, NA, NA, NA, NA, NA, NA…
#> $ new_vaccinations                        <dbl> NA, NA, NA, NA, NA, NA, NA, NA…
#> $ total_vaccinations_per_hundred          <dbl> NA, NA, NA, NA, NA, NA, NA, NA…
#> $ people_vaccinated_per_hundred           <dbl> NA, NA, NA, NA, NA, NA, NA, NA…
#> $ people_fully_vaccinated_per_hundred     <dbl> NA, NA, NA, NA, NA, NA, NA, NA…
#> $ total_boosters_per_hundred              <dbl> NA, NA, NA, NA, NA, NA, NA, NA…
#> $ stringency_index                        <dbl> 8.33, 8.33, 8.33, 8.33, 8.33, …
#> $ population                              <dbl> 39835428, 39835428, 39835428, …
#> $ population_density                      <dbl> 54.422, 54.422, 54.422, 54.422…
#> $ median_age                              <dbl> 18.6, 18.6, 18.6, 18.6, 18.6, …
#> $ aged_65_older                           <dbl> 2.581, 2.581, 2.581, 2.581, 2.…
#> $ aged_70_older                           <dbl> 1.337, 1.337, 1.337, 1.337, 1.…
#> $ gdp_per_capita                          <dbl> 1803.987, 1803.987, 1803.987, …
#> $ extreme_poverty                         <dbl> NA, NA, NA, NA, NA, NA, NA, NA…
#> $ cardiovasc_death_rate                   <dbl> 597.029, 597.029, 597.029, 597…
#> $ diabetes_prevalence                     <dbl> 9.59, 9.59, 9.59, 9.59, 9.59, …
#> $ female_smokers                          <dbl> NA, NA, NA, NA, NA, NA, NA, NA…
#> $ male_smokers                            <dbl> NA, NA, NA, NA, NA, NA, NA, NA…
#> $ handwashing_facilities                  <dbl> 37.746, 37.746, 37.746, 37.746…
#> $ hospital_beds_per_thousand              <dbl> 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, …
#> $ life_expectancy                         <dbl> 64.83, 64.83, 64.83, 64.83, 64…
#> $ human_development_index                 <dbl> 0.511, 0.511, 0.511, 0.511, 0.…
#> $ excess_mortality_cumulative_absolute    <dbl> NA, NA, NA, NA, NA, NA, NA, NA…
#> $ excess_mortality_cumulative             <dbl> NA, NA, NA, NA, NA, NA, NA, NA…
#> $ excess_mortality                        <dbl> NA, NA, NA, NA, NA, NA, NA, NA…
#> $ excess_mortality_cumulative_per_million <dbl> NA, NA, NA, NA, NA, NA, NA, NA…