Kaiser Family Foundation US County-level ICU bed data

kff_icu_beds()

Value

a data.frame

Examples

res = kff_icu_beds()
colnames(res)
#>  [1] "fips"                      "county"                   
#>  [3] "st"                        "state"                    
#>  [5] "hospitals_in_cost_reports" "Hospitals_in_HC"          
#>  [7] "all_icu"                   "Total_pop"                
#>  [9] "60plus"                    "60plus_pct"               
#> [11] "60plus_per_each_icu_bed"  
head(res)
#> # A tibble: 6 × 11
#>   fips  county  st    state   hospitals_in_co… Hospitals_in_HC all_icu Total_pop
#>   <chr> <chr>   <chr> <chr>              <dbl>           <dbl>   <dbl>     <dbl>
#> 1 01001 Autauga AL    Alabama                1               1       6     55036
#> 2 01003 Baldwin AL    Alabama                3               3      51    203360
#> 3 01005 Barbour AL    Alabama                1               1       5     26201
#> 4 01007 Bibb    AL    Alabama                1               1       0     22580
#> 5 01009 Blount  AL    Alabama                1               1       6     57667
#> 6 01011 Bullock AL    Alabama                1               1       0     10478
#> # … with 3 more variables: `60plus` <dbl>, `60plus_pct` <dbl>,
#> #   `60plus_per_each_icu_bed` <dbl>
dplyr::glimpse(res)
#> Rows: 3,142
#> Columns: 11
#> $ fips                      <chr> "01001", "01003", "01005", "01007", "01009",…
#> $ county                    <chr> "Autauga", "Baldwin", "Barbour", "Bibb", "Bl…
#> $ st                        <chr> "AL", "AL", "AL", "AL", "AL", "AL", "AL", "A…
#> $ state                     <chr> "Alabama", "Alabama", "Alabama", "Alabama", …
#> $ hospitals_in_cost_reports <dbl> 1, 3, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 2, 1, 0,…
#> $ Hospitals_in_HC           <dbl> 1, 3, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 2, 1, 0,…
#> $ all_icu                   <dbl> 6, 51, 5, 0, 6, 0, 7, 24, 0, 0, 6, 0, 0, 4, …
#> $ Total_pop                 <dbl> 55036, 203360, 26201, 22580, 57667, 10478, 2…
#> $ `60plus`                  <dbl> 10523, 53519, 6150, 4773, 13600, 2371, 5151,…
#> $ `60plus_pct`              <dbl> 0.191, 0.263, 0.235, 0.211, 0.236, 0.226, 0.…
#> $ `60plus_per_each_icu_bed` <dbl> 1754, 1049, 1230, NA, 2267, NA, 736, 1130, N…
summary(res)
#>      fips              county               st               state          
#>  Length:3142        Length:3142        Length:3142        Length:3142       
#>  Class :character   Class :character   Class :character   Class :character  
#>  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
#>                                                                             
#>                                                                             
#>                                                                             
#>                                                                             
#>  hospitals_in_cost_reports Hospitals_in_HC     all_icu       
#>  Min.   : 0.000            Min.   : 0.000   Min.   :   0.00  
#>  1st Qu.: 1.000            1st Qu.: 1.000   1st Qu.:   0.00  
#>  Median : 1.000            Median : 1.000   Median :   0.00  
#>  Mean   : 1.439            Mean   : 1.457   Mean   :  23.64  
#>  3rd Qu.: 2.000            3rd Qu.: 2.000   3rd Qu.:  12.00  
#>  Max.   :74.000            Max.   :76.000   Max.   :2126.00  
#>                                                              
#>    Total_pop            60plus          60plus_pct     60plus_per_each_icu_bed
#>  Min.   :      74   Min.   :     27   Min.   :0.0580   Min.   :  40           
#>  1st Qu.:   10945   1st Qu.:   2813   1st Qu.:0.2120   1st Qu.: 715           
#>  Median :   25692   Median :   6307   Median :0.2440   Median :1089           
#>  Mean   :  102166   Mean   :  21310   Mean   :0.2473   Mean   :1300           
#>  3rd Qu.:   67445   3rd Qu.:  16084   3rd Qu.:0.2780   3rd Qu.:1639           
#>  Max.   :10105722   Max.   :1800341   Max.   :0.6420   Max.   :8469           
#>                                                        NA's   :1665