R/beoutbreakprepared.R
beoutbreakprepared_data.Rd
Individual-level data contributed from around the world
beoutbreakprepared_data(quietly = TRUE)
https://github.com/beoutbreakprepared/nCoV2019
logical(1) defaults to TRUE. If FALSE, warnings generated during parsing will be displayed. These often relate to nonstandard date values that occur idiosyncratically.
tidy data.frame of content
This is individual level data, collected from diverse sources. Data may be messy and we have made limited attempts at clean up.
misckraemer2020epidemiological, author = nCoV-2019 Data Working Group, title = Epidemiological Data from the nCoV-2019 Outbreak: Early Descriptions from Publicly Available Data, howpublished = Accessed on yyyy-mm-dd from http://virological.org/t/epidemiological-data-from-the-ncov-2019-outbreak-early-descriptions-from-publicly-available-data/337, year = 2020
ARTICLEXu2020-wb, title = "Open access epidemiological data from the COVID-19 outbreak", author = "Xu, Bo and Kraemer, Moritz U G and Open COVID-19 Data Curation Group", journal = "The Lancet infectious diseases", volume = 20, number = 5, pages = "534", month = may, year = 2020, url = "http://dx.doi.org/10.1016/S1473-3099(20)30119-5", file = "All Papers/X/Xu et al. 2020 - Open access epidemiological data from the COVID-19 outbreak.pdf", language = "en", issn = "1473-3099, 1474-4457", pmid = "32087115", doi = "10.1016/S1473-3099(20)30119-5", pmc = "PMC7158984"
Other data-import:
acaps_government_measures_data()
,
acaps_secondary_impact_data()
,
apple_mobility_data()
,
cci_us_vaccine_data()
,
cdc_aggregated_projections()
,
cdc_excess_deaths()
,
cdc_social_vulnerability_index()
,
coronadatascraper_data()
,
coronanet_government_response_data()
,
cov_glue_lineage_data()
,
cov_glue_newick_data()
,
cov_glue_snp_lineage()
,
covidtracker_data()
,
descartes_mobility_data()
,
ecdc_data()
,
econ_tracker_consumer_spending
,
econ_tracker_employment
,
econ_tracker_unemp_data
,
economist_excess_deaths()
,
financial_times_excess_deaths()
,
google_mobility_data()
,
government_policy_timeline()
,
jhu_data()
,
jhu_us_data()
,
kff_icu_beds()
,
nytimes_county_data()
,
oecd_unemployment_data()
,
owid_data()
,
param_estimates_published()
,
test_and_trace_data()
,
us_county_geo_details()
,
us_county_health_rankings()
,
us_healthcare_capacity()
,
us_hospital_details()
,
us_state_distancing_policy()
,
usa_facts_data()
,
who_cases()
Other case-tracking:
align_to_baseline()
,
bulk_estimate_Rt()
,
combined_us_cases_data()
,
coronadatascraper_data()
,
covidtracker_data()
,
ecdc_data()
,
estimate_Rt()
,
jhu_data()
,
nytimes_county_data()
,
owid_data()
,
plot_epicurve()
,
test_and_trace_data()
,
usa_facts_data()
,
who_cases()
Other individual-cases:
cov_glue_lineage_data()
,
cov_glue_newick_data()
res = beoutbreakprepared_data()
#> Warning: One or more parsing issues, see `problems()` for details
colnames(res)
#> [1] "ID" "age"
#> [3] "sex" "city"
#> [5] "province" "country"
#> [7] "latitude" "longitude"
#> [9] "geo_resolution" "date_onset_symptoms"
#> [11] "date_admission_hospital" "date_confirmation"
#> [13] "symptoms" "lives_in_Wuhan"
#> [15] "travel_history_dates" "travel_history_location"
#> [17] "reported_market_exposure" "additional_information"
#> [19] "chronic_disease_binary" "chronic_disease"
#> [21] "source" "sequence_available"
#> [23] "outcome" "date_death_or_discharge"
#> [25] "notes_for_discussion" "location"
#> [27] "admin3" "admin2"
#> [29] "admin1" "country_new"
#> [31] "admin_id" "data_moderator_initials"
#> [33] "travel_history_binary"
head(res)
#> # A tibble: 6 × 33
#> ID age sex city province country latitude longitude geo_resolution
#> <chr> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <chr>
#> 1 000-1-1 NA male Shek… Hong Ko… China 22.4 114. point
#> 2 000-1-10 78 male Vo E… Veneto Italy 45.3 11.7 point
#> 3 000-1-100 61 fema… NA NA Singap… 1.35 104. admin0
#> 4 000-1-10… NA NA Zhen… Henan China 34.6 113. admin2
#> 5 000-1-10… NA NA Ping… Jiangxi China 27.5 114. admin2
#> 6 000-1-10… NA NA Yich… Jiangxi China 28.3 115. admin2
#> # … with 24 more variables: date_onset_symptoms <date>,
#> # date_admission_hospital <date>, date_confirmation <date>, symptoms <chr>,
#> # lives_in_Wuhan <chr>, travel_history_dates <date>,
#> # travel_history_location <chr>, reported_market_exposure <chr>,
#> # additional_information <chr>, chronic_disease_binary <lgl>,
#> # chronic_disease <chr>, source <chr>, sequence_available <lgl>,
#> # outcome <chr>, date_death_or_discharge <date>, …