
The RBioc Book

Sean Davis University of ColoradoAnschutz School of Medicine

2024-07-26

Table of contents

Preface 1
Who is this book for? . 1
Why this book? . 1
Adult learners . 1

I. Introduction 4

1. Introducing R and RStudio 5
Questions . 5
Learning Objectives . 5
1.1. Introduction . 5
1.2. What is R? . 5
1.3. Why use R? . 6
1.4. Why not use R? . 7
1.5. R License and the Open Source Ideal . 7
1.6. RStudio . 7

1.6.1. Getting started with RStudio . 8
1.6.2. The RStudio Interface . 8

2. R mechanics 12
2.1. Learning objectives . 12
2.2. Installing R . 12
2.3. Installing RStudio . 12
2.4. Starting R . 12
2.5. RStudio: A Quick Tour . 13
2.6. Interacting with R . 13

2.6.1. Expressions . 14
2.6.2. Assignment . 14

2.7. Rules for Names in R . 16
2.8. Resources for Getting Help . 17

i

Table of contents

3. Up and Running with R 18
3.1. The R User Interface . 18

3.1.1. An exercise . 22
3.2. Objects . 22
3.3. Functions . 30

3.3.1. Sample with Replacement . 34
3.4. Writing Your Own Functions . 36

3.4.1. The Function Constructor . 37
3.5. Arguments . 39
3.6. Scripts . 42
3.7. Summary . 43

4. Packages and more dice 44
4.1. Packages . 44

4.1.1. install.packages . 45
4.1.2. library . 45
4.1.3. Finding R packages . 45

4.2. Are our dice fair? . 46
4.3. Bonus exercise . 49

5. Reading and writing data files 50
5.1. Introduction . 50
5.2. CSV files . 50

5.2.1. Writing a CSV file . 50
5.2.2. Reading a CSV file . 51

5.3. Excel files . 53
5.3.1. Reading an Excel file . 53
5.3.2. Writing an Excel file . 54

5.4. Additional options . 55

6. Plotting with ggplot2 56
6.1. Data . 56
6.2. Aesthetics . 59
6.3. Geometries . 60
6.4. Grouping . 64
6.5. Facets . 66
6.6. Labels . 68
6.7. Themes . 69
6.8. Saving a Plot . 71
References . 71

ii

Table of contents

II. R Data Structures 74
Chapter overview . 75

7. Vectors 78
7.1. What is a Vector? . 78
7.2. Creating vectors . 79
7.3. Vector Operations . 81
7.4. Logical Vectors . 82

7.4.1. Logical Operators . 83
7.5. Indexing Vectors . 84
7.6. Named Vectors . 85
7.7. Character Vectors, A.K.A. Strings . 86
7.8. Missing Values, AKA “NA” . 88
7.9. Exercises . 89

8. Matrices 91
8.1. Creating a matrix . 91
8.2. Accessing elements of a matrix . 94
8.3. Changing values in a matrix . 96
8.4. Calculations on matrix rows and columns 98
8.5. Exercises . 100

8.5.1. Data preparation . 100
8.5.2. Questions . 100

9. Data Frames 103
9.1. Learning goals . 103
9.2. Learning objectives . 103
9.3. Dataset . 103
9.4. Reading in data . 104
9.5. Inspecting data.frames . 105
9.6. Accessing variables (columns) and subsetting 108

9.6.1. Some data exploration . 110
9.6.2. More advanced indexing and subsetting 111

9.7. Aggregating data . 114
9.8. Creating a data.frame from scratch . 115
9.9. Saving a data.frame . 116

10.Factors 117
10.1. Factors . 117

iii

Table of contents

III. Exploratory data analysis 119

11.Introduction to dplyr: mammal sleep dataset 121
11.1. Learning goals . 121
11.2. Learning objectives . 121
11.3. What is dplyr? . 122
11.4. Why Is dplyr userful? . 122
11.5. Data: Mammals Sleep . 122
11.6. dplyr verbs . 123
11.7. Using the dplyr verbs . 123

11.7.1. Selecting columns: select() . 124
11.7.2. Selecting rows: filter() . 126

11.8. “Piping” ” with |> . 128
11.8.1. Arrange Or Re-order Rows Using arrange() 129

11.9. Create New Columns Using mutate() . 131
11.9.1. Create summaries: summarise() . 132

11.10.Grouping data: group_by() . 133

12.Case Study: Behavioral Risk Factor Surveillance System 134
12.1. A Case Study on the Behavioral Risk Factor Surveillance System 134
12.2. Loading the Dataset . 134
12.3. Inspecting the Data . 135
12.4. Summary Statistics . 136
12.5. Data Visualization . 136
12.6. Analyzing Relationships Between Variables 138
12.7. Exercises . 139
12.8. Conclusion . 142
12.9. Learn about the data . 142
12.10.Clean data . 142
12.11.Weight in 1990 vs. 2010 Females . 143
12.12.Weight and height in 2010 Males . 144

IV. statististics 148

13.Working with distribution functions 149
13.1. pnorm . 149
13.2. dnorm . 151
13.3. qnorm . 151
13.4. rnorm . 151
13.5. IQ scores . 153

iv

Table of contents

14.The t-statistic and t-distribution 158
14.1. Background . 158
14.2. The Z-score and probability . 158

14.2.1. Small diversion: two-sided pnorm function 160
14.3. The t-distribution . 161

14.3.1. p-values based on Z vs t . 163
14.3.2. Experiment . 164

14.4. Summary of t-distribution vs normal distribution 168
14.5. t.test . 169

14.5.1. One-sample . 169
14.5.2. two-sample . 170
14.5.3. from a data.frame . 170
14.5.4. Equivalence to linear model . 172

14.6. Power calculations . 173
14.7. Resources . 176

15.K-means clustering 177
15.1. History of the k-means algorithm . 177
15.2. The k-means algorithm . 178
15.3. Pros and cons of k-means clustering . 178
15.4. An example of k-means clustering . 179

15.4.1. The data and experimental background 179
15.5. Getting data . 180
15.6. Preprocessing . 181
15.7. Clustering . 183
15.8. Summary . 184

16.Machine Learning 185
16.1. What is Machine Learning? . 185
16.2. Classes of Machine Learning . 185

16.2.1. Supervised learning . 185
16.2.2. Unsupervised learning . 185

16.3. Supervised Learning . 190
16.3.1. Linear regression . 190
16.3.2. K-nearest Neighbor . 191

16.4. Penalized regression . 193
16.4.1. Ridge regression . 194
16.4.2. LASSO regression . 194
16.4.3. Elastic Net . 195
16.4.4. Classification and Regression Trees (CART) 195
16.4.5. RandomForest . 198

v

Table of contents

17.Machine Learning 2 200
17.1. Overview . 200

17.1.1. Key features of mlr3 . 200
17.2. The mlr3 workflow . 202

17.2.1. The machine learning Task . 204
17.2.2. The “Learner” in Machine Learning 206

17.3. Setup . 210
17.4. Example: Cancer types . 210

17.4.1. Understanding the Problem . 210
17.4.2. Data Preparation . 211
17.4.3. Feature selection and data cleaning 211
17.4.4. Creating the “task” . 212
17.4.5. Splitting the data . 213
17.4.6. Example learners . 213

17.5. Example Predicting age from DNA methylation 223
17.5.1. Example learners . 225

17.6. Example: Expression prediction from histone modification data 234
17.6.1. The Data . 235
17.6.2. Create task . 238
17.6.3. Example learners . 238

V. Bioconductor 248

18.Accessing and working with public omics data 249
18.1. Background . 249
18.2. GEOquery to PCA . 250

19.Introduction to SummarizedExperiment 253
19.1. Anatomy of a SummarizedExperiment . 253

19.1.1. Assays . 254
19.1.2. ‘Row’ (regions-of-interest) data . 256
19.1.3. ‘Column’ (sample) data . 257
19.1.4. Experiment-wide metadata . 258

19.2. Common operations on SummarizedExperiment 259
19.2.1. Subsetting . 259
19.2.2. Getters and setters . 260
19.2.3. Range-based operations . 262

19.3. Constructing a SummarizedExperiment . 262

vi

Table of contents

20.Ranges Exercises 264
20.1. Exercise 1 . 264
20.2. Exercise 2 . 265
20.3. Exercise 3 . 266
20.4. Exercise 4 . 268

21.ATAC-Seq with Bioconductor 271

Overview 272
Pre-requisites . 272
Participation . 272
R / Bioconductor packages used . 272
Time outline . 273
Learning goals . 273
Learning objectives . 273

22.Background 274
22.1. Informatics overview . 277
22.2. Working with sequencing data in Bioconductor 278

23.Data import and quality control 279
23.1. Coverage . 281
23.2. Fragment Lengths . 284

24.Viewing data in IGV 290

25.Additional work 291

Appendix 292
Session info . 292
MACS2 . 294

26.References 295

27.Transfer Learning in scATAC-seq and scRNA-seq 296
27.1. Background . 296

27.1.1. Protocol . 297
27.1.2. Primary data processing . 300
27.1.3. Quality control metrics . 300

27.2. ATAC-seq and RNA-seq integration . 300
27.2.1. Setup . 301
27.2.2. RNA-seq processing . 302

vii

Table of contents

27.2.3. Annotate ATAC-seq regions . 303
27.2.4. ATAC-seq processing . 304

27.3. Transfer learning . 309
27.3.1. Loading the Data . 309
27.3.2. Selecting the Most Variable Genes 310
27.3.3. Splitting the Dataset . 310
27.3.4. Performing PCA on the First Subset 310
27.3.5. Projecting the Second Subset . 311
27.3.6. Comparing the Subsets in the Principal Component Space 312

References 314

Appendices 316

A. Appendix 316
A.1. Data Sets . 316
A.2. Swirl . 316

B. Additional resources 317

viii

List of Figures

1. Why do adults choose to learn something? 2
2. How to stay stuck in data science (or anything). The “Read-Do” loop tends

to deliver the best results. Too much reading between doing can be some-
what effective. Reading and simply copy-paste is probably the least effec-
tive. When working through material, experiment. Try to break things.
Incorporate your own experience or applications whenever possible. 3

1.1. Google trends showing the popularity of R over time based on Google searches 6
1.2. The RStudio interface. In this layout, the source pane is in the upper left,

the console is in the lower left, the environment panel is in the top right
and the viewer/help/files panel is in the bottom right. 9

1.3. Dealing with limited screen real estate can be a challenge, particularly when
you want to open another window to, for example, view a web page. You
can resize the panes by sliding the center divider (red arrows) or by clicking
on the minimize/maximize buttons (see blue arrow). 10

3.1. Your computer does your bidding when you type R commands at the prompt
in the bottom line of the console pane. Don’t forget to hit the Enter key.
When you first open RStudio, the console appears in the pane on your left,
but you can change this with File > Tools > Global Options in the
menu bar. 19

3.2. Assignment creates an object in the environment pane. 25
3.3. “When R performs element-wise execution, it matches up vectors and then

manipulates each pair of elements independently.” 28
3.4. “R will repeat a short vector to do element-wise operations with two vectors

of uneven lengths.” . 29
3.5. “When you link functions together, R will resolve them from the innermost

operation to the outermost. Here R first looks up die, then calculates the
mean of one through six, then rounds the mean.” 31

3.6. “Every function in R has the same parts, and you can use function to create
these parts. Assign the result to a name, so you can call the function later.” 41

ix

List of Figures

3.7. “When you open an R Script (File > New File > R Script in the menu bar),
RStudio creates a fourth pane (or puts a new tab in the existing pane) above
the console where you can write and edit your code.” 42

4.1. In an ideal world, a histogram of the results would look like this 46
4.2. Histogram of the sums from 100 rolls of our fair dice 48
4.3. Histogram with 100000 rolls much more closely approximates the pyramidal

shape we anticipated . 49

6.1. Components of a Data Visualization Layer Structure. This diagram from
Caron (2018) illustrates the layered components of a data visualization, each
contributing to the final plot. Each layer builds upon the previous one,
culminating in a comprehensive and interpretable visualization. Layers from
bottom (foundation) to top (icing on the cake) are: 1) Data: The actual
variables to be plotted. 2) Aesthetics: Scales onto which data is mapped.
3) Geometries: Shapes used to represent the data. 4) Facets: Rows and
columns of sub-plots. 5) Statistics: Statistical models and summaries. 6)
Coordinates: Plotting space for the data. 7) Theme: Describes all the non-
data ink. 57

6.2. A plot with age on the x-axis and charges on the y-axis. 60
6.3. A scatter plot with age on the x-axis and charges on the y-axis results from

adding geom_point() to the plot. 61
6.4. A scatter plot with age on the x-axis and charges on the y-axis with colored

points, larger size, and transparency. 62
6.5. A scatter plot with age on the x-axis and charges on the y-axis with a best

fit line. 64
6.6. A scatter plot with age on the x-axis and charges on the y-axis with points

colored by the smoker variable. 65
6.7. A scatter plot with age on the x-axis and charges on the y-axis with points

colored by the smoker variable and a best fit line. 66
6.8. A grid of scatter plots with age on the x-axis and charges on the y-axis,

colored by the smoker variable, and faceted by the obese variable. 67
6.9. A scatter plot with age on the x-axis and charges on the y-axis, colored by

the smoker variable, and faceted by the obese variable, with labels. 69
6.10. A scatter plot with age on the x-axis and charges on the y-axis, colored by

the smoker variable, faceted by the obese variable, with labels and a minimal
theme. 70

6.11. A pictorial representation of R’s most common data structures are vectors,
matrices, arrays, lists, and dataframes. Figure from Hands-on Programming
with R. 76

x

List of Figures

7.1. “Pictorial representation of three vector examples. The first vector is a
numeric vector. The second is a ‘logical’ vector. The third is a character
vector. Vectors also have indices and, optionally, names.” 78

8.1. A matrix is a collection of column vectors. 91

13.1. The pnorm function takes a quantile (value on the x-axis) and returns the
area under the curve to the left of that value. 150

13.2. The pnorm function takes a quantile (value on the x-axis) and returns the
area under the curve to the left of that value. 151

13.3. The pnorm function takes a quantile (value on the x-axis) and returns the
area under the curve to the left of that value. 152

13.13.The rnorm function takes a number of samples and returns a vector of ran-
dom numbers from the normal distribution (with mean=0, sd=1 as defaults) 152

13.4. The pnorm function takes a quantile (value on the x-axis) and returns the
area under the curve to the left of that value. 153

13.5. The dnorm function returns the height of the normal distribution at a given
point. 154

13.6. The dnorm function returns the height of the normal distribution at a given
point. 155

13.7. The dnorm function returns the height of the normal distribution at a given
point. 156

13.8. The qnorm function is the inverse of the pnorm function in that it takes a
probability and gives the quantile. 157

13.9. The qnorm function is the inverse of the pnorm function in that it takes a
probability and gives the quantile. 157

13.10.The qnorm function is the inverse of the pnorm function in that it takes a
probability and gives the quantile. 157

13.11.The qnorm function is the inverse of the pnorm function in that it takes a
probability and gives the quantile. 157

13.12.The qnorm function is the inverse of the pnorm function in that it takes a
probability and gives the quantile. 157

14.1. t-distributions for various degrees of freedom. Note that the tails are fatter
for smaller degrees of freedom, which is a result of estimating the standard
deviation from the data. 162

15.1. K-means clustering takes a dataset and divides it into k clusters. 177
15.2. Histogram of standard deviations for all genes in the deRisi dataset. 182

xi

List of Figures

15.3. Gene expression profiles for the four clusters identified by k-means clustering.
Each line represents a gene in the cluster, and each column represents a time
point in the experiment. Each cluster shows a distinct trend where the genes
in the cluster are potentially co-regulated. 184

16.1. Data simulated according to the function 𝑓(𝑥) = 𝑠𝑖𝑛(2𝜋𝑥) + 𝑁(0, 0.25)
fitted with four different models. A) A simple linear model demonstrates
underfitting. B) A linear model with a sin function (𝑦 = 𝑠𝑖𝑛(2𝜋𝑥)) and C) a
loess model with a wide span (0.5) demonstrate good fits. D) A loess model
with a narrow span (0.1) is a good example of overfitting. 187

16.2. A simple view of machine learning according the sklearn. 188
16.3. A schematic of the supervised learning process. 188
16.4. Training and testing sets. 189
16.5. Figure. The k-nearest neighbor algorithm can be used for regression or

classification. 191
16.6. An example of a decision tree that performs classification, also sometimes

called a classification tree. 197
16.7. Random forests or random decision forests is an ensemble learning method

for classification, regression and other tasks that operates by constructing a
multitude of decision trees at training time. 199

17.1. The mlr3 ecosystem. 201
17.2. The simplified workflow of a machine learning pipeline using mlr3. 203
17.3. Two stages of a learner. Top: data (features and a target) are passed to

an (untrained) learner. Bottom: new data are passed to the trained model
which makes predictions for the ‘missing’ target column. 209

17.4. Regression diagnostic plots. The top left plot shows the residuals vs. fitted
values. The top right plot shows the normal Q-Q plot. The bottom left plot
shows the scale-location plot. The bottom right plot shows the residuals
vs. leverage. 226

17.5. What is the combined effect of histone marks on gene expression? 234
17.6. Boxplots of original and scaled data. 236
17.7. Heatmap of 500 randomly sampled rows of the data. Columns are histone

marks and there is a row for each gene. 237

19.1. Summarized Experiment. There are three main components, the colData(),
the rowData() and the assays(). The accessors for the various parts of a
complete SummarizedExperiment object match the names. 255

xii

List of Figures

22.1. Chromatin accessibility methods, compared. Representative DNA fragments
generated by each assay are shown, with end locations within chromatin
defined by colored arrows. Bar diagrams represent data signal obtained from
each assay across the entire region. The footprint created by a transcription
factor (TF) is shown for ATAC-seq and DNase-seq experiments. 275

22.2. Multimodal chromatin comparisons. From (Buenrostro et al. 2013), Figure
4. (a) CTCF footprints observed in ATAC-seq and DNase-seq data, at a
specific locus on chr1. (b) Aggregate ATAC-seq footprint for CTCF (motif
shown) generated over binding sites within the genome (c) CTCF predicted
binding probability inferred from ATAC-seq data, position weight matrix
(PWM) scores for the CTCF motif, and evolutionary conservation (Phy-
loP). Right-most column is the CTCF ChIP-seq data (ENCODE) for this
GM12878 cell line, demonstrating high concordance with predicted binding
probability. 276

22.3. A BAM file in text form. The output of samtools view is the text format of
the BAM file (called SAM format). Bioconductor and many other tools use
BAM files for input. Note that BAM files also often include an index .bai
file that enables random access into the file; one can read just a genomic
region without having to read the entire file. 277

23.1. Reads per chromosome. In our example data, we are using only chromosomes
21 and 22. 280

23.2. Read counts normalized by chromosome length. This is not a particularly
important plot, but it can be useful to see the relative contribution of each
chromosome given its length. 281

23.3. Relationship between fragment length and nucleosome number. 285
23.4. Fragment length histogram. 286
23.5. Enrichment of nucleosome free reads just upstream of the TSS. 288
23.6. Depletion of nucleosome free reads just upstream of the TSS. 289
23.7. Comparison of signals at TSS. Mononucleosome data on the left, nucleosome-

free on the right. 289

27.1. 297
27.2. ATAC-seq pipelines universally require several common bioinformatic tools.

This figure/table shows tools used in various published ATAC-seq pipelines.
The figure also displays the typical steps in an ATAC-seq analysis. 299

xiii

List of Figures

27.3. (A) Library complexity plots the read count versus externally calcu-
lated deduplicated read counts. Red line is library complexity curve for
SRR5427743. Dashed line represents a completely unique library. Red dia-
mond is the externally calculated duplicate read count. (B) TSS enrichment
quality control plot. (C) Fragment length distribution showing character-
istic peaks at mono-, di-, and tri-nucleosomes. (D) Cumulative fraction of
reads in annotated genomic features (cFRiF). Inset: Fraction of reads in
those features (FRiF). (E) Signal tracks including: nucleotide-resolution
and smoothed signal tracks. PEPATAC default peaks are called using the
default pipeline settings for MACS2 (32). (F) Distribution of peaks over
the genome. (G) Distribution of peaks relative to TSS. (H) Distribution of
peaks in annotated genomic partitions. Data from SRR5427743. 300

27.4. 306
27.5. In this plot, we are comparing the subset 1 PCA plot to that produced by

projecting the samples from subset 2 into the first two principle components
from subset 1. 313

xiv

List of Tables

7.1. Atomic (simplest) data types in R. 79

13.1. Table 1.1: Functions for the normal distribution 149

22.1. Commonly used Bioconductor and their high-level use cases. 278

xv

Preface

Who is this book for?

• People who want to learn data science
• People who want to teach data science
• People who want to learn how to teach data science
• People who want to learn how to learn data science

Why this book?

This book is a collection of resources for learning R and Bioconductor. It is meant to be
largely self-directed, but for those looking to teach data science, it can also be used as a
guide for structuring a course. Material is a bit variable in terms of difficulty, prerequisites,
and format which is a reflection of the organic creation of the material.

Students are encouraged to work with others to learn the material. Instructors are encour-
aged to use the material to create a course that is tailored to the needs of their students
and to spend lots of time in 1:1 and small groups to support students in their learning. See
below for additional thoughts on adult learning and how it relates to this material.

Adult learners

Adult Learning Theory, also known as Andragogy, is the concept and practice of designing,
developing, and delivering instructional experiences for adult learners. It is based on the
belief that adults learn differently than children, and thus, require distinct approaches to
engage, motivate, and retain information (Center 2016). The term was first introduced by
Malcolm Knowles, an American educator who is known for his work in adult education
(Knowles, Holton, and Swanson 2005).

One of the fundamental principles of Adult Learning Theory is that adults are self-directed
learners. This means that we prefer to take control of our own learning process and set
personal goals for themselves. We are motivated by our desire to solve problems or gain

1

Adult learners

knowledge to improve our lives (see Figure 1). As a result, educational content for adults
should be relevant and applicable to real-life situations. Furthermore, adult learners should
be given opportunities to actively engage in the learning process by making choices, setting
goals, and evaluating their progress.

Figure 1.: Why do adults choose to learn something?

Another key aspect of Adult Learning Theory is the role of experience. We bring a wealth
of experience to the learning process, which serves as a resource for new learning. We often
have well-established beliefs, values, and mental models that can influence our willingness
to accept new ideas and concepts. Therefore, it is essential to acknowledge and respect our
shared and unique past experiences and create an environment where we all feel comfortable
sharing our perspectives.

To effectively learn as a group of adult learners, it is crucial to establish a collaborative
learning environment that promotes open communication and fosters trust among partic-
ipants. We all appreciate and strive for a respectful and supportive atmosphere where
we can express our opinions without fear of judgment. Instructors should help facilitate
discussions, encourage peer-to-peer interactions, and incorporate group activities and col-
laboration to capitalize on the collective knowledge of participants.

Additionally, adult learners often have multiple responsibilities outside of the learning en-
vironment, such as work and family commitments. As a result, we require flexible learning
opportunities that accommodate busy schedules. Offering a variety of instructional for-
mats, such as online modules, self-paced learning, or evening classes, can help ensure that
adult learners have access to education despite any time constraints.

Adult learners benefit from a learner-centered approach that focuses on the individual
needs, preferences, and interests of each participant can greatly enhance the overall learning
experience. In addition, we tend to be more intrinsically motivated to learn when we have

2

Adult learners

a sense of autonomy and can practice and experiment (see Figure 2) with new concepts in
a safe environment.

Read Do Read Do Read Do

Read Copy & Paste Read Copy & Paste Read Copy & Paste

Read Read Read Do Do Do

Figure 2.: How to stay stuck in data science (or anything). The “Read-Do” loop tends
to deliver the best results. Too much reading between doing can be somewhat
effective. Reading and simply copy-paste is probably the least effective. When
working through material, experiment. Try to break things. Incorporate your
own experience or applications whenever possible.

Understanding Adult Learning Theory and its principles can significantly enhance the ef-
fectiveness of teaching and learning as adults. By respecting our autonomy, acknowledging
our experiences, creating a supportive learning environment, offering flexible learning op-
portunities, and utilizing diverse teaching methods, we can better cater to the unique needs
and preferences of adult learners.

In practice, that means that we will will not be prescriptive in our approach to teaching
data science. We will not tell you what to do, but rather we will provide you with a variety
of options and you can choose what works best for you. We will also provide you with a
variety of resources and you can choose where to focus your time. Given that we cannot
possibly cover everything, we will provide you with a framework for learning and you can
fill in the gaps as you see fit. A key component of our success as adult learners is to gain
the confidence to ask questions and problem-solve on our own.

3

Part I.

Introduction

4

1. Introducing R and RStudio

Questions

• What is R?
• Why use R?
• Why not use R?
• Why use RStudio and how does it differ from R?

Learning Objectives

• Know advantages of analyzing data in R
• Know advantages of using RStudio
• Be able to start RStudio on your computer
• Identify the panels of the RStudio interface
• Be able to customize the RStudio layout

1.1. Introduction

In this chapter, we will discuss the basics of R and RStudio, two essential tools in genomics
data analysis. We will cover the advantages of using R and RStudio, how to set up RStudio,
and the different panels of the RStudio interface.

1.2. What is R?

R(https://en.wikipedia.org/wiki/R_(programming_language) is a programming language
and software environment designed for statistical computing and graphics. It is widely
used by statisticians, data scientists, and researchers for data analysis and visualization.
R is an open-source language, which means it is free to use, modify, and distribute. Over

5

https://cran.r-project.org/

Learning Objectives

the years, R has become particularly popular in the fields of genomics and bioinformatics,
owing to its extensive libraries and powerful data manipulation capabilities.

The R language is a dialect of the S language, which was developed in the 1970s at Bell
Laboratories. The first version of R was written by Robert Gentleman and Ross Ihaka and
released in 1995 (see this slide deck for Ross Ihaka’s take on R’s history). Since then, R has
been continuously developed by the R Core Team, a group of statisticians and computer
scientists. The R Core Team releases a new version of R every year.

Figure 1.1.: Google trends showing the popularity of R over time based on Google searches

1.3. Why use R?

There are several reasons why R is a popular choice for data analysis, particularly in
genomics and bioinformatics. These include:

1. Open-source: R is free to use and has a large community of developers who con-
tribute to its growth and development. What is “open-source”?

2. Extensive libraries: There are thousands of R packages available for a wide range of
tasks, including specialized packages for genomics and bioinformatics. These libraries
have been extensively tested and ara available for free.

3. Data manipulation: R has powerful data manipulation capabilities, making it easy
(or at least possible) to clean, process, and analyze large datasets.

4. Graphics and visualization: R has excellent tools for creating high-quality graph-
ics and visualizations that can be customized to meet the specific needs of your
analysis. In most cases, graphics produced by R are publication-quality.

5. Reproducible research: R enables you to create reproducible research by recording
your analysis in a script, which can be easily shared and executed by others. In
addition, R does not have a meaningful graphical user interface (GUI), which renders
analysis in R much more reproducible than tools that rely on GUI interactions.

6. Cross-platform: R runs on Windows, Mac, and Linux (as well as more obscure
systems).

7. Interoperability with other languages: R can interfact with FORTRAN, C, and
many other languages.

6

https://www.stat.auckland.ac.nz/~ihaka/downloads/Massey.pdf
https://opensource.com/resources/what-open-source

Learning Objectives

8. Scalability: R is useful for small and large projects.

I can develop code for analysis on my Mac laptop. I can then install the same code on
our 20k core cluster and run it in parallel on 100 samples, monitor the process, and then
update a database (for example) with R when complete.

1.4. Why not use R?

• R cannot do everything.
• R is not always the “best” tool for the job.
• R will not hold your hand. Often, it will slap your hand instead.
• The documentation can be opaque (but there is documentation).
• R can drive you crazy (on a good day) or age you prematurely (on a bad one).
• Finding the right package to do the job you want to do can be challenging; worse,

some contributed packages are unreliable.]{}
• R does not have a meaningfully useful graphical user interface (GUI).

1.5. R License and the Open Source Ideal

R is free (yes, totally free!) and distributed under GNU license. In particular, this license
allows one to:

• Download the source code
• Modify the source code to your heart’s content
• Distribute the modified source code and even charge money for it, but you must

distribute the modified source code under the original GNU license]{}

This license means that R will always be available, will always be open source, and can
grow organically without constraint.

1.6. RStudio

RStudio is an integrated development environment (IDE) for R. It provides a graphical user
interface (GUI) for R, making it easier to write and execute R code. RStudio also provides
several other useful features, including a built-in console, syntax-highlighting editor, and
tools for plotting, history, debugging, workspace management, and workspace viewing.
RStudio is available in both free and commercial editions; the commercial edition provides
some additional features, including support for multiple sessions and enhanced debugging

7

Learning Objectives

1.6.1. Getting started with RStudio

To get started with RStudio, you first need to install both R and RStudio on your computer.
Follow these steps:

1. Download and install R from the official R website.
2. Download and install RStudio from the official RStudio website.
3. Launch RStudio. You should see the RStudio interface with four panels.

1.6.2. The RStudio Interface

RStudio’s interface consists of four panels (see Figure 1.2):

• Console This panel displays the R console, where you can enter and execute R com-
mands directly. The console also shows the output of your code, error messages,
and other information.

• Source This panel is where you write and edit your R scripts. You can create new
scripts, open existing ones, and run your code from this panel.

• Environment This panel displays your current workspace, including all variables,
data objects, and functions that you have created or loaded in your R session.

• Plots, Packages, Help, and Viewer These panels display plots, installed packages,
help files, and web content, respectively.

Do I need to use RStudio?

No. You can use R without RStudio. However, RStudio makes it easier to write and
execute R code, and it provides several useful features that are not available in the
basic R console. Note that the only part of RStudio that is actually interacting with
R directly is the console. The other panels are simply providing a GUI that enhances
the user experience.

Customizing the RStudio Interface

You can customize the layout of RStudio to suit your preferences. To do so, go to
Tools > Global Options > Appearance. Here, you can change the theme, font
size, and panel layout. You can also resize the panels as needed to gain screen real
estate (see Figure 1.3).

8

https://cran.r-project.org/
https://posit.co/downloads/

Learning Objectives

Figure 1.2.: The RStudio interface. In this layout, the source pane is in the upper left,
the console is in the lower left, the environment panel is in the top right
and the viewer/help/files panel is in the bottom right.

9

Learning Objectives

Figure 1.3.: Dealing with limited screen real estate can be a challenge, particularly when
you want to open another window to, for example, view a web page. You can
resize the panes by sliding the center divider (red arrows) or by clicking on the
minimize/maximize buttons (see blue arrow).

10

Learning Objectives

In summary, R and RStudio are powerful tools for genomics data analysis. By understand-
ing the advantages of using R and RStudio and familiarizing yourself with the RStudio
interface, you can efficiently analyze and visualize your data. In the following chapters, we
will delve deeper into the functionality of R, Bioconductor, and various statistical methods
to help you gain a comprehensive understanding of genomics data analysis.

11

2. R mechanics

2.1. Learning objectives

• Be able to start R and RStudio
• Learn to interact with the R console
• Know the difference between expressions and assignment
• Recognize valid and invalid R names
• Know how to access the R help system
• Know how to assign values to variables, find what is in R memory, and remove values

from R memory

2.2. Installing R

R is available for Windows, Mac, and Linux. To install R, go to the Comprehensive
R Archive Network (CRAN). Click on the download link for your operating system and
follow the instructions.

2.3. Installing RStudio

RStudio is an Integrated Development Environment (IDE) for R. It is available for Win-
dows, Mac, and Linux. To install RStudio, go to the RStudio download page. Click on the
download link for your operating system and follow the instructions.

2.4. Starting R

How to start R depends a bit on the operating system (Mac, Windows, Linux) and interface.
In this course, we will largely be using an Integrated Development Environment (IDE)
called RStudio, but there is nothing to prohibit using R at the command line or in some
other interface (and there are a few).

12

https://cran.r-project.org/
https://cran.r-project.org/
https://www.rstudio.com/products/rstudio/download/

2. R mechanics

2.5. RStudio: A Quick Tour

The RStudio interface has multiple panes. All of these panes are simply for convenience
except the “Console” panel, typically in the lower left corner (by default). The console pane
contains the running R interface. If you choose to run R outside RStudio, the interaction
will be identical to working in the console pane. This is useful to keep in mind as some
environments, such as a computer cluster, encourage using R without RStudio.

• Panes
• Options
• Help
• Environment, History, and Files

2.6. Interacting with R

The only meaningful way of interacting with R is by typing into the R console. At the most
basic level, anything that we type at the command line will fall into one of two categories:

1. Assignments
x = 1
y <- 2

2. Expressions
1 + pi + sin(42)

[1] 3.225071

The assignment type is obvious because either the The <- or = are used. Note that when
we type expressions, R will return a result. In this case, the result of R evaluating 1 + pi
+ sin(42) is 3.2250711.

The standard R prompt is a “>” sign. When present, R is waiting for the next expression
or assignment. If a line is not a complete R command, R will continue the next line with
a “+”. For example, typing the fillowing with a “Return” after the second “+” will result
in R giving back a “+” on the next line, a prompt to keep typing.

1 + pi +
sin(3.7)

13

2. R mechanics

[1] 3.611757

R can be used as a glorified calculator by using R expressions. Mathematical operations
include:

• Addition: +
• Subtraction: -
• Multiplication: *
• Division: /
• Exponentiation: ^
• Modulo: %%

The ^ operator raises the number to its left to the power of the number to its right: for
example 3^2 is 9. The modulo returns the remainder of the division of the number to the
left by the number on its right, for example 5 modulo 3 or 5 %% 3 is 2.

2.6.1. Expressions

5 + 2
28 %% 3
3^2
5 + 4 * 4 + 4 ^ 4 / 10

Note that R follows order-of-operations and groupings based on parentheses.

5 + 4 / 9
(5 + 4) / 9

2.6.2. Assignment

While using R as a calculator is interesting, to do useful and interesting things, we need
to assign values to objects. To create objects, we need to give it a name followed by the
assignment operator <- (or, entirely equivalently, =) and the value we want to give it:

weight_kg <- 55

14

2. R mechanics

<- is the assignment operator. Assigns values on the right to objects on the left, it is like
an arrow that points from the value to the object. Using an = is equivalent (in nearly all
cases). Learn to use <- as it is good programming practice.

Objects can be given any name such as x, current_temperature, or subject_id (see
below). You want your object names to be explicit and not too long. They cannot start
with a number (2x is not valid but x2 is). R is case sensitive (e.g., weight_kg is different
from Weight_kg). There are some names that cannot be used because they represent the
names of fundamental functions in R (e.g., if, else, for, see here for a complete list).
In general, even if it’s allowed, it’s best to not use other function names, which we’ll get
into shortly (e.g., c, T, mean, data, df, weights). When in doubt, check the help to see
if the name is already in use. It’s also best to avoid dots (.) within a variable name as
in my.dataset. It is also recommended to use nouns for variable names, and verbs for
function names.

When assigning a value to an object, R does not print anything. You can force to print
the value by typing the name:

weight_kg

[1] 55

Now that R has weight_kg in memory, which R refers to as the “global environment”, we
can do arithmetic with it. For instance, we may want to convert this weight in pounds
(weight in pounds is 2.2 times the weight in kg).

2.2 * weight_kg

[1] 121

We can also change a variable’s value by assigning it a new one:

weight_kg <- 57.5
2.2 * weight_kg

[1] 126.5

This means that assigning a value to one variable does not change the values of other
variables. For example, let’s store the animal’s weight in pounds in a variable.

15

https://stat.ethz.ch/R-manual/R-devel/library/base/html/Reserved.html

2. R mechanics

weight_lb <- 2.2 * weight_kg

and then change weight_kg to 100.

weight_kg <- 100

What do you think is the current content of the object weight_lb, 126.5 or 220?

You can see what objects (variables) are stored by viewing the Environment tab in Rstudio.
You can also use the ls() function. You can remove objects (variables) with the rm()
function. You can do this one at a time or remove several objects at once. You can also
use the little broom button in your environment pane to remove everything from your
environment.

ls()
rm(weight_lb, weight_kg)
ls()

What happens when you type the following, now?

weight_lb # oops! you should get an error because weight_lb no longer exists!

2.7. Rules for Names in R

R allows users to assign names to objects such as variables, functions, and even dimensions
of data. However, these names must follow a few rules.

• Names may contain any combination of letters, numbers, underscore, and “.”
• Names may not start with numbers, underscore.
• R names are case-sensitive.

Examples of valid R names include:

pi
x
camelCaps
my_stuff
MY_Stuff

16

2. R mechanics

this.is.the.name.of.the.man
ABC123
abc1234asdf
.hi

2.8. Resources for Getting Help

There is extensive built-in help and documentation within R. A separate page contains a
collection of additional resources.

If the name of the function or object on which help is sought is known, the following
approaches with the name of the function or object will be helpful. For a concrete example,
examine the help for the print method.

help(print)
help('print')
?print

If the name of the function or object on which help is sought is not known, the following
from within R will be helpful.

help.search('microarray')
RSiteSearch('microarray')
apropos('histogram')

There are also tons of online resources that Google will include in searches if online searching
feels more appropriate.

I strongly recommend using help("newfunction"") for all functions that are new or un-
familiar to you.

There are also many open and free resources and reference guides for R.

• Quick-R: a quick online reference for data input, basic statistics and plots
• R reference card PDF by Tom Short
• Rstudio cheatsheets

17

further_resources.html
http://www.statmethods.net/
https://cran.r-project.org/doc/contrib/Short-refcard.pdf
https://www.rstudio.com/resources/cheatsheets/

3. Up and Running with R

In this chapter, we’re going to get an introduction to the R language, so we can dive right
into programming. We’re going to create a pair of virtual dice that can generate random
numbers. No need to worry if you’re new to programming. We’ll return to many of the
concepts here in more detail later.

To simulate a pair of dice, we need to break down each die into its essential features. A die
can only show one of six numbers: 1, 2, 3, 4, 5, and 6. We can capture the die’s essential
characteristics by saving these numbers as a group of values in the computer. Let’s save
these numbers first and then figure out a way to “roll” our virtual die.

3.1. The R User Interface

The RStudio interface is simple. You type R code into the bottom line of the RStudio
console pane and then click Enter to run it. The code you type is called a command,
because it will command your computer to do something for you. The line you type it into
is called the command line.

When you type a command at the prompt and hit Enter, your computer executes the
command and shows you the results. Then RStudio displays a fresh prompt for your next
command. For example, if you type 1 + 1 and hit Enter, RStudio will display:

> 1 + 1
[1] 2
>

You’ll notice that a [1] appears next to your result. R is just letting you know that this
line begins with the first value in your result. Some commands return more than one value,
and their results may fill up multiple lines. For example, the command 100:130 returns
31 values; it creates a sequence of integers from 100 to 130. Notice that new bracketed
numbers appear at the start of the second and third lines of output. These numbers just
mean that the second line begins with the 14th value in the result, and the third line begins
with the 25th value. You can mostly ignore the numbers that appear in brackets:

18

3. Up and Running with R

Figure 3.1.: Your computer does your bidding when you type R commands at the prompt
in the bottom line of the console pane. Don’t forget to hit the Enter key. When
you first open RStudio, the console appears in the pane on your left, but you
can change this with File > Tools > Global Options in the menu bar.

19

3. Up and Running with R

> 100:130
[1] 100 101 102 103 104 105 106 107 108 109 110 111 112
[14] 113 114 115 116 117 118 119 120 121 122 123 124 125
[25] 126 127 128 129 130

Tip

The colon operator (:) returns every integer between two integers. It is an easy way
to create a sequence of numbers.

When do we compile?

In some languages, like C, Java, and FORTRAN, you have to compile your human-
readable code into machine-readable code (often 1s and 0s) before you can run it. If
you’ve programmed in such a language before, you may wonder whether you have
to compile your R code before you can use it. The answer is no. R is a dynamic
programming language, which means R automatically interprets your code as you
run it.

If you type an incomplete command and press Enter, R will display a + prompt, which
means R is waiting for you to type the rest of your command. Either finish the command
or hit Escape to start over:

> 5 -
+
+ 1
[1] 4

If you type a command that R doesn’t recognize, R will return an error message. If you
ever see an error message, don’t panic. R is just telling you that your computer couldn’t
understand or do what you asked it to do. You can then try a different command at the
next prompt:

> 3 % 5
Error: unexpected input in "3 % 5"
>

20

3. Up and Running with R

Tip

Whenever you get an error message in R, consider googling the error message. You’ll
often find that someone else has had the same problem and has posted a solution
online. Simply cutting-and-pasting the error message into a search engine will often
work

Once you get the hang of the command line, you can easily do anything in R that you
would do with a calculator. For example, you could do some basic arithmetic:

2 * 3

[1] 6

4 - 1

[1] 3

this obeys order-of-operations
6 / (4 - 1)

[1] 2

Tip

R treats the hashtag character, #, in a special way; R will not run anything that
follows a hashtag on a line. This makes hashtags very useful for adding comments
and annotations to your code. Humans will be able to read the comments, but your
computer will pass over them. The hashtag is known as the commenting symbol in R.

Cancelling commands

Some R commands may take a long time to run. You can cancel a command once
it has begun by pressing ctrl + c or by clicking the “stop sign” if it is available in
Rstudio. Note that it may also take R a long time to cancel the command.

21

3. Up and Running with R

3.1.1. An exercise

That’s the basic interface for executing R code in RStudio. Think you have it? If so, try
doing these simple tasks. If you execute everything correctly, you should end up with the
same number that you started with:

1. Choose any number and add 2 to it.
2. Multiply the result by 3.
3. Subtract 6 from the answer.
4. Divide what you get by 3.

10 + 2

[1] 12

12 * 3

[1] 36

36 - 6

[1] 30

30 / 3

[1] 10

3.2. Objects

Now that you know how to use R, let’s use it to make a virtual die. The : operator from
a couple of pages ago gives you a nice way to create a group of numbers from one to six.
The : operator returns its results as a vector (we are going to work with vectors in more
detail), a one-dimensional set of numbers:

1:6
1 2 3 4 5 6

22

3. Up and Running with R

That’s all there is to how a virtual die looks! But you are not done yet. Running 1:6
generated a vector of numbers for you to see, but it didn’t save that vector anywhere for
later use. If we want to use those numbers again, we’ll have to ask your computer to save
them somewhere. You can do that by creating an R object.

R lets you save data by storing it inside an R object. What is an object? Just a name that
you can use to call up stored data. For example, you can save data into an object like a
or b. Wherever R encounters the object, it will replace it with the data saved inside, like
so:

a <- 1
a

[1] 1

a + 2

[1] 3

What just happened?

1. To create an R object, choose a name and then use the less-than symbol, <,
followed by a minus sign, -, to save data into it. This combination looks like an
arrow, <-. R will make an object, give it your name, and store in it whatever
follows the arrow. So a <- 1 stores 1 in an object named a.

2. When you ask R what’s in a, R tells you on the next line.
3. You can use your object in new R commands, too. Since a previously stored

the value of 1, you’re now adding 1 to 2.

Assignment vs expressions

Everything that you type into the R console can be assigned to one of two categories:

• Assignments
• Expressions

An expression is a command that tells R to do something. For example, 1 + 2 is
an expression that tells R to add 1 and 2. When you type an expression into the
R console, R will evaluate the expression and return the result. For example, if you
type 1 + 2 into the R console, R will return 3. Expressions can have “side effects”

23

3. Up and Running with R

but they don’t explicitly result in anything being added to R memory.

5 + 2

[1] 7

28 %% 3

[1] 1

3^2

[1] 9

5 + 4 * 4 + 4 ^ 4 / 10

[1] 46.6

While using R as a calculator is interesting, to do useful and interesting things, we
need to assign values to objects. To create objects, we need to give it a name followed
by the assignment operator <- (or, entirely equivalently, =) and the value we want to
give it:

weight_kg <- 55

So, for another example, the following code would create an object named die that contains
the numbers one through six. To see what is stored in an object, just type the object’s
name by itself:

die <- 1:6
die

[1] 1 2 3 4 5 6

When you create an object, the object will appear in the environment pane of RStudio,
as shown in Figure 3.2. This pane will show you all of the objects you’ve created since
opening RStudio.

24

3. Up and Running with R

Figure 3.2.: Assignment creates an object in the environment pane.

25

3. Up and Running with R

You can name an object in R almost anything you want, but there are a few rules. First, a
name cannot start with a number. Second, a name cannot use some special symbols, like
^, !, $, @, +, -, /, or *:

Good names Names that cause errors
a 1trial
b $
FOO ^mean
my_var 2nd
.day !bad

Capitalization matters

R is case-sensitive, so name and Name will refer to different objects:

> Name = 0
> Name + 1
[1] 1
> name + 1
Error: object 'name' not found

The error above is a common one!

Finally, R will overwrite any previous information stored in an object without asking you
for permission. So, it is a good idea to not use names that are already taken:

my_number <- 1
my_number

[1] 1

my_number <- 999
my_number

[1] 999

You can see which object names you have already used with the function ls:

26

3. Up and Running with R

ls()

Your environment will contain different names than mine, because you have probably cre-
ated different objects.

You can also see which names you have used by examining RStudio’s environment pane.

We now have a virtual die that is stored in the computer’s memory and which has a name
that we can use to refer to it. You can access it whenever you like by typing the word
die.

So what can you do with this die? Quite a lot. R will replace an object with its contents
whenever the object’s name appears in a command. So, for example, you can do all sorts of
math with the die. Math isn’t so helpful for rolling dice, but manipulating sets of numbers
will be your stock and trade as a data scientist. So let’s take a look at how to do that:

die - 1

[1] 0 1 2 3 4 5

die / 2

[1] 0.5 1.0 1.5 2.0 2.5 3.0

die * die

[1] 1 4 9 16 25 36

R uses element-wise execution when working with a vector like die. When you manipulate
a set of numbers, R will apply the same operation to each element in the set. So for
example, when you run die - 1, R subtracts one from each element of die.

When you use two or more vectors in an operation, R will line up the vectors and perform
a sequence of individual operations. For example, when you run die * die, R lines up
the two die vectors and then multiplies the first element of vector 1 by the first element of
vector 2. R then multiplies the second element of vector 1 by the second element of vector
2, and so on, until every element has been multiplied. The result will be a new vector the
same length as the first two {Figure 3.3}.

If you give R two vectors of unequal lengths, R will repeat the shorter vector until it is
as long as the longer vector, and then do the math, as shown in Figure 3.4. This isn’t a

27

3. Up and Running with R

Figure 3.3.: “When R performs element-wise execution, it matches up vectors and then
manipulates each pair of elements independently.”

permanent change–the shorter vector will be its original size after R does the math. If the
length of the short vector does not divide evenly into the length of the long vector, R will
return a warning message. This behavior is known as vector recycling, and it helps R do
element-wise operations:

1:2

[1] 1 2

1:4

[1] 1 2 3 4

die

[1] 1 2 3 4 5 6

die + 1:2

[1] 2 4 4 6 6 8

28

3. Up and Running with R

die + 1:4

Warning in die + 1:4: longer object length is not a multiple of shorter object
length

[1] 2 4 6 8 6 8

Figure 3.4.: “R will repeat a short vector to do element-wise operations with two vectors
of uneven lengths.”

Element-wise operations are a very useful feature in R because they manipulate groups of
values in an orderly way. When you start working with data sets, element-wise operations
will ensure that values from one observation or case are only paired with values from the
same observation or case. Element-wise operations also make it easier to write your own
programs and functions in R.

Element-wise operations are not matrix operations

It is important to know that operations with vectors are not the same that you
might expect if you are expecting R to perform “matrix” operations. R can do inner
multiplication with the %*% operator and outer multiplication with the %o% operator:

Inner product (1*1 + 2*2 + 3*3 + 4*4 + 5*5 + 6*6)
die %*% die
Outer product
die %o% die

29

3. Up and Running with R

Now that you can do math with your die object, let’s look at how you could “roll” it.
Rolling your die will require something more sophisticated than basic arithmetic; you’ll
need to randomly select one of the die’s values. And for that, you will need a function.

3.3. Functions

R has many functions and puts them all at our disposal. We can use functions to do simple
and sophisticated tasks. For example, we can round a number with the round function, or
calculate its factorial with the factorial function. Using a function is pretty simple. Just
write the name of the function and then the data you want the function to operate on in
parentheses:

round(3.1415)

[1] 3

factorial(3)

[1] 6

The data that you pass into the function is called the function’s argument. The argument
can be raw data, an R object, or even the results of another R function. In this last case,
R will work from the innermost function to the outermost Figure 3.5.

mean(1:6)

[1] 3.5

mean(die)

[1] 3.5

round(mean(die))

[1] 4

30

3. Up and Running with R

Figure 3.5.: “When you link functions together, R will resolve them from the innermost
operation to the outermost. Here R first looks up die, then calculates the
mean of one through six, then rounds the mean.”

Returning to our die, we can use the sample function to randomly select one of the die’s
values; in other words, the sample function can simulate rolling the die.

The sample function takes two arguments: a vector named x and a number named size.
sample will return size elements from the vector:

sample(x = 1:4, size = 2)

[1] 3 4

To roll your die and get a number back, set x to die and sample one element from it. You’ll
get a new (maybe different) number each time you roll it:

sample(x = die, size = 1)

[1] 5

sample(x = die, size = 1)

[1] 5

sample(x = die, size = 1)

[1] 3

31

3. Up and Running with R

Many R functions take multiple arguments that help them do their job. You can give a
function as many arguments as you like as long as you separate each argument with a
comma.

You may have noticed that I set die and 1 equal to the names of the arguments in sample,
x and size. Every argument in every R function has a name. You can specify which
data should be assigned to which argument by setting a name equal to data, as in the
preceding code. This becomes important as you begin to pass multiple arguments to
the same function; names help you avoid passing the wrong data to the wrong argument.
However, using names is optional. You will notice that R users do not often use the name
of the first argument in a function. So you might see the previous code written as:

sample(die, size = 1)

[1] 4

Often, the name of the first argument is not very descriptive, and it is usually obvious
what the first piece of data refers to anyways.

But how do you know which argument names to use? If you try to use a name that a
function does not expect, you will likely get an error:

round(3.1415, corners = 2)
Error in round(3.1415, corners = 2) : unused argument(s) (corners = 2)

If you’re not sure which names to use with a function, you can look up the function’s
arguments with args. To do this, place the name of the function in the parentheses behind
args. For example, you can see that the round function takes two arguments, one named
x and one named digits:

args(round)

function (x, digits = 0, ...)
NULL

Did you notice that args shows that the digits argument of round is already set to 0?
Frequently, an R function will take optional arguments like digits. These arguments are
considered optional because they come with a default value. You can pass a new value
to an optional argument if you want, and R will use the default value if you do not. For
example, round will round your number to 0 digits past the decimal point by default. To
override the default, supply your own value for digits:

32

3. Up and Running with R

round(3.1415)

[1] 3

round(3.1415, digits = 2)

[1] 3.14

pi happens to be a built-in value in R
pi

[1] 3.141593

round(pi)

[1] 3

You should write out the names of each argument after the first one or two when you call
a function with multiple arguments. Why? First, this will help you and others understand
your code. It is usually obvious which argument your first input refers to (and sometimes
the second input as well). However, you’d need a large memory to remember the third
and fourth arguments of every R function. Second, and more importantly, writing out
argument names prevents errors.

If you do not write out the names of your arguments, R will match your values to the
arguments in your function by order. For example, in the following code, the first value,
die, will be matched to the first argument of sample, which is named x. The next value,
1, will be matched to the next argument, size:

sample(die, 1)

[1] 3

As you provide more arguments, it becomes more likely that your order and R’s order may
not align. As a result, values may get passed to the wrong argument. Argument names
prevent this. R will always match a value to its argument name, no matter where it appears
in the order of arguments:

33

3. Up and Running with R

sample(size = 1, x = die)

[1] 3

3.3.1. Sample with Replacement

If you set size = 2, you can almost simulate a pair of dice. Before we run that code, think
for a minute why that might be the case. sample will return two numbers, one for each
die:

sample(die, size = 2)

[1] 1 5

I said this “almost” works because this method does something funny. If you use it many
times, you’ll notice that the second die never has the same value as the first die, which
means you’ll never roll something like a pair of threes or snake eyes. What is going on?

By default, sample builds a sample without replacement. To see what this means, imagine
that sample places all of the values of die in a jar or urn. Then imagine that sample
reaches into the jar and pulls out values one by one to build its sample. Once a value has
been drawn from the jar, sample sets it aside. The value doesn’t go back into the jar, so
it cannot be drawn again. So if sample selects a six on its first draw, it will not be able to
select a six on the second draw; six is no longer in the jar to be selected. Although sample
creates its sample electronically, it follows this seemingly physical behavior.

One side effect of this behavior is that each draw depends on the draws that come before
it. In the real world, however, when you roll a pair of dice, each die is independent of the
other. If the first die comes up six, it does not prevent the second die from coming up six.
In fact, it doesn’t influence the second die in any way whatsoever. You can recreate this
behavior in sample by adding the argument replace = TRUE:

sample(die, size = 2, replace = TRUE)

[1] 3 4

34

3. Up and Running with R

The argument replace = TRUE causes sample to sample with replacement. Our jar exam-
ple provides a good way to understand the difference between sampling with replacement
and without. When sample uses replacement, it draws a value from the jar and records
the value. Then it puts the value back into the jar. In other words, sample replaces each
value after each draw. As a result, sample may select the same value on the second draw.
Each value has a chance of being selected each time. It is as if every draw were the first
draw.

Sampling with replacement is an easy way to create independent random samples. Each
value in your sample will be a sample of size one that is independent of the other values.
This is the correct way to simulate a pair of dice:

sample(die, size = 2, replace = TRUE)

[1] 4 2

Congratulate yourself; you’ve just run your first simulation in R! You now have a method
for simulating the result of rolling a pair of dice. If you want to add up the dice, you can
feed your result straight into the sum function:

dice <- sample(die, size = 2, replace = TRUE)
dice

[1] 4 5

sum(dice)

[1] 9

What would happen if you call dice multiple times? Would R generate a new pair of dice
values each time? Let’s give it a try:

dice

[1] 4 5

35

3. Up and Running with R

dice

[1] 4 5

dice

[1] 4 5

The name dice refers to a vector of two numbers. Calling more than once does not change
the favlue. Each time you call dice, R will show you the result of that one time you called
sample and saved the output to dice. R won’t rerun sample(die, 2, replace = TRUE)
to create a new roll of the dice. Once you save a set of results to an R object, those results
do not change.

However, it would be convenient to have an object that can re-roll the dice whenever you
call it. You can make such an object by writing your own R function.

3.4. Writing Your Own Functions

To recap, you already have working R code that simulates rolling a pair of dice:

die <- 1:6
dice <- sample(die, size = 2, replace = TRUE)
sum(dice)

[1] 9

You can retype this code into the console anytime you want to re-roll your dice. However,
this is an awkward way to work with the code. It would be easier to use your code if you
wrapped it into its own function, which is exactly what we’ll do now. We’re going to write
a function named roll that you can use to roll your virtual dice. When you’re finished,
the function will work like this: each time you call roll(), R will return the sum of rolling
two dice:

36

3. Up and Running with R

roll()
8

roll()
3

roll()
7

Functions may seem mysterious or fancy, but they are just another type of R object. Instead
of containing data, they contain code. This code is stored in a special format that makes it
easy to reuse the code in new situations. You can write your own functions by recreating
this format.

3.4.1. The Function Constructor

Every function in R has three basic parts: a name, a body of code, and a set of arguments.
To make your own function, you need to replicate these parts and store them in an R
object, which you can do with the function function. To do this, call function() and
follow it with a pair of braces, {}:

my_function <- function() {}

This function, as written, doesn’t do anything (yet). However, it is a valid function. You
can call it by typing its name followed by an open and closed parenthesis:

my_function()

NULL

function will build a function out of whatever R code you place between the braces. For
example, you can turn your dice code into a function by calling:

roll <- function() {
die <- 1:6
dice <- sample(die, size = 2, replace = TRUE)
sum(dice)

}

37

3. Up and Running with R

Indentation and readability

Notice each line of code between the braces is indented. This makes the code easier
to read but has no impact on how the code runs. R ignores spaces and line breaks
and executes one complete expression at a time. Note that in other languages like
python, spacing is extremely important and part of the language.

Just hit the Enter key between each line after the first brace, {. R will wait for you to type
the last brace, }, before it responds.

Don’t forget to save the output of function to an R object. This object will become
your new function. To use it, write the object’s name followed by an open and closed
parenthesis:

roll()

[1] 6

You can think of the parentheses as the “trigger” that causes R to run the function. If you
type in a function’s name without the parentheses, R will show you the code that is stored
inside the function. If you type in the name with the parentheses, R will run that code:

roll

function() {
die <- 1:6
dice <- sample(die, size = 2, replace = TRUE)
sum(dice)

}

roll()

[1] 6

The code that you place inside your function is known as the body of the function. When
you run a function in R, R will execute all of the code in the body and then return the
result of the last line of code. If the last line of code doesn’t return a value, neither will
your function, so you want to ensure that your final line of code returns a value. One way

38

3. Up and Running with R

to check this is to think about what would happen if you ran the body of code line by line
in the command line. Would R display a result after the last line, or would it not?

Here’s some code that would display a result:

dice
1 + 1
sqrt(2)

And here’s some code that would not:

dice <- sample(die, size = 2, replace = TRUE)
two <- 1 + 1
a <- sqrt(2)

Again, this is just showing the distinction between expressions and assignments.

3.5. Arguments

What if we removed one line of code from our function and changed the name die to bones
(just a name–don’t think of it as important), like this?

roll2 <- function() {
dice <- sample(bones, size = 2, replace = TRUE)
sum(dice)

}

Now I’ll get an error when I run the function. The function needs the object bones to
do its job, but there is no object named bones to be found (you can check by typing ls()
which will show you the names in the environment, or memory).

roll2()
Error in sample(bones, size = 2, replace = TRUE) :
object 'bones' not found

You can supply bones when you call roll2 if you make bones an argument of the function.
To do this, put the name bones in the parentheses that follow function when you define
roll2:

39

3. Up and Running with R

roll2 <- function(bones) {
dice <- sample(bones, size = 2, replace = TRUE)
sum(dice)

}

Now roll2 will work as long as you supply bones when you call the function. You can
take advantage of this to roll different types of dice each time you call roll2.

Remember, we’re rolling pairs of dice:

roll2(bones = 1:4)

[1] 4

roll2(bones = 1:6)

[1] 5

roll2(1:20)

[1] 23

Notice that roll2 will still give an error if you do not supply a value for the bones argument
when you call roll2:

roll2()
Error in sample(bones, size = 2, replace = TRUE) :
argument "bones" is missing, with no default

You can prevent this error by giving the bones argument a default value. To do this, set
bones equal to a value when you define roll2:

roll2 <- function(bones = 1:6) {
dice <- sample(bones, size = 2, replace = TRUE)
sum(dice)

}

40

3. Up and Running with R

Now you can supply a new value for bones if you like, and roll2 will use the default if
you do not:

roll2()

[1] 6

You can give your functions as many arguments as you like. Just list their names, separated
by commas, in the parentheses that follow function. When the function is run, R will
replace each argument name in the function body with the value that the user supplies for
the argument. If the user does not supply a value, R will replace the argument name with
the argument’s default value (if you defined one).

To summarize, function helps you construct your own R functions. You create a body
of code for your function to run by writing code between the braces that follow function.
You create arguments for your function to use by supplying their names in the parentheses
that follow function. Finally, you give your function a name by saving its output to an
R object, as shown in Figure 3.6.

Once you’ve created your function, R will treat it like every other function in R. Think
about how useful this is. Have you ever tried to create a new Excel option and add it
to Microsoft’s menu bar? Or a new slide animation and add it to Powerpoint’s options?
When you work with a programming language, you can do these types of things. As you
learn to program in R, you will be able to create new, customized, reproducible tools for
yourself whenever you like.

Figure 3.6.: “Every function in R has the same parts, and you can use function to create
these parts. Assign the result to a name, so you can call the function later.”

41

3. Up and Running with R

3.6. Scripts

Scripts are code that are saved for later reuse or editing. An R script is just a plain text
file that you save R code in. You can open an R script in RStudio by going to File >
New File > R script in the menu bar. RStudio will then open a fresh script above your
console pane, as shown in Figure 3.7.

I strongly encourage you to write and edit all of your R code in a script before you run it
in the console. Why? This habit creates a reproducible record of your work. When you’re
finished for the day, you can save your script and then use it to rerun your entire analysis
the next day. Scripts are also very handy for editing and proofreading your code, and they
make a nice copy of your work to share with others. To save a script, click the scripts pane,
and then go to File > Save As in the menu bar.

Figure 3.7.: “When you open an R Script (File > New File > R Script in the menu bar),
RStudio creates a fourth pane (or puts a new tab in the existing pane) above
the console where you can write and edit your code.”

RStudio comes with many built-in features that make it easy to work with scripts. First,
you can automatically execute a line of code in a script by clicking the Run button at the
top of the editor panel.

R will run whichever line of code your cursor is on. If you have a whole section highlighted,
R will run the highlighted code. Alternatively, you can run the entire script by clicking the
Source button. Don’t like clicking buttons? You can use Control + Return as a shortcut
for the Run button. On Macs, that would be Command + Return.

42

3. Up and Running with R

If you’re not convinced about scripts, you soon will be. It becomes a pain to write multi-
line code in the console’s single-line command line. Let’s avoid that headache and open
your first script now before we move to the next chapter.

Tip

Extract function
RStudio comes with a tool that can help you build functions. To use it, highlight the
lines of code in your R script that you want to turn into a function. Then click Code
> Extract Function in the menu bar. RStudio will ask you for a function name to
use and then wrap your code in a function call. It will scan the code for undefined
variables and use these as arguments.
You may want to double-check RStudio’s work. It assumes that your code is correct,
so if it does something surprising, you may have a problem in your code.

3.7. Summary

We’ve covered a lot of ground already. You now have a virtual die stored in your computer’s
memory, as well as your own R function that rolls a pair of dice. You’ve also begun speaking
the R language.

The two most important components of the R language are objects, which store data, and
functions, which manipulate data. R also uses a host of operators like +, -, *, /, and <- to
do basic tasks. As a data scientist, you will use R objects to store data in your computer’s
memory, and you will use functions to automate tasks and do complicated calculations.

43

4. Packages and more dice

We now have code that allows us to roll two dice and add the results together. To keep
things interesting, let’s aim to weight the dice so that we can fool our friends into thinking
we are lucky.

First, though, we should prove to ourselves that our dice are fair. We can investigate the
behavior of our dice using two powerful and general tools;

• Simulation (or repetition or repeated sampling)
• Visualization

For the repetition part of things, we will use a built-in R function, replicate. For visual-
ization, we are going to use a convenient plotting function, qplot. However, qplot does
not come built into R. We must install a package to gain access to it.

4.1. Packages

R is a powerful language for data science and programming, allowing beginners and experts
alike to manipulate, analyze, and visualize data effectively. One of the most appealing
features of R is its extensive library of packages, which are essential tools for expanding its
capabilities and streamlining the coding process.

An R package is a collection of reusable functions, datasets, and compiled code created
by other users and developers to extend the functionality of the base R language. These
packages cover a wide range of applications, such as data manipulation, statistical analysis,
machine learning, and data visualization. By utilizing existing R packages, you can leverage
the expertise of others and save time by avoiding the need to create custom functions from
scratch.

Using others’ R packages is incredibly beneficial as it allows you to take advantage of the
collective knowledge of the R community. Developers often create packages to address spe-
cific challenges, optimize performance, or implement popular algorithms or methodologies.
By incorporating these packages into your projects, you can enhance your productivity,
reduce development time, and ensure that you are using well-tested and reliable code.

44

4. Packages and more dice

4.1.1. install.packages

To install an R package, you can use the install.packages() function in the R console or
script. For example, to install the popular data manipulation package “dplyr,” simply type
install.packages(“dplyr”). This command will download the package from the Comprehen-
sive R Archive Network (CRAN) and install it on your local machine. Keep in mind that
you only need to install a package once, unless you want to update it to a newer version.

In our case, we want to install the ggplot2 package.

install.packages('ggplot2')

4.1.2. library

After installing an R package, you will need to load it into your R session before using its
functions. To load a package, use the library() function followed by the package name,
such as library(dplyr). Loading a package makes its functions and datasets available for
use in your current R session. Note that you need to load a package every time you start
a new R session.

library(ggplot2)

Now, the functionality of the ggplot2 package is available in our R session.

Installing vs loading packages

The main thing to remember is that you only need to install a package once, but you
need to load it with library each time you wish to use it in a new R session. R will
unload all of its packages each time you close RStudio.

4.1.3. Finding R packages

Finding useful R packages can be done in several ways. First, browsing CRAN (https:
//cran.r-project.org/) and Bioconductor (more later, https://bioconductor.org) are an ex-
cellent starting points, as they host thousands of packages categorized by topic. Addition-
ally, online forums like Stack Overflow and R-bloggers can provide valuable recommenda-
tions based on user experiences. Social media platforms such as Twitter, where developers
and data scientists often share new packages and updates, can also be a helpful resource.
Finally, don’t forget to ask your colleagues or fellow R users for their favorite packages, as
they may have insights on which ones best suit your specific needs.

45

https://cran.r-project.org/
https://cran.r-project.org/
https://bioconductor.org

4. Packages and more dice

4.2. Are our dice fair?

Well, let’s review our code.

roll2 <- function(bones = 1:6) {
dice = sample(bones, size = 2, replace = TRUE)
sum(dice)

}

If our dice are fair, then each number should show up equally. What does the sum look
like with our two dice?

Figure 4.1.: In an ideal world, a histogram of the results would look like this

Read the help page for replicate (i.e., help("replicate")). In short, it suggests that
we can repeat our dice rolling as many times as we like and replicate will return a vector
of the sums for each roll.

rolls = replicate(n = 100, roll2())

What does rolls look like?

head(rolls)

[1] 7 5 6 6 3 4

46

4. Packages and more dice

length(rolls)

[1] 100

mean(rolls)

[1] 6.76

summary(rolls)

Min. 1st Qu. Median Mean 3rd Qu. Max.
3.00 5.00 7.00 6.76 9.00 12.00

This looks like it roughly agrees with our sketched out ideal histogram in Figure 4.1. How-
ever, now that we’ve loaded the qplot function from the ggplot2 package, we can make a
histogram of the data themselves.

qplot(rolls, binwidth=1)

Warning: `qplot()` was deprecated in ggplot2 3.4.0.

47

4. Packages and more dice

0

5

10

15

2.5 5.0 7.5 10.0 12.5
rolls

Figure 4.2.: Histogram of the sums from 100 rolls of our fair dice

How does your histogram look (and yours will be different from mine since we are sampling
random values)? Is it what you expect?

What happens to our histogram as we increase the number of replicates?

rolls = replicate(n = 100000, roll2())
qplot(rolls, binwidth=1)

48

4. Packages and more dice

0

5000

10000

15000

2.5 5.0 7.5 10.0 12.5
rolls

Figure 4.3.: Histogram with 100000 rolls much more closely approximates the pyramidal
shape we anticipated

4.3. Bonus exercise

How would you change the roll2 function to weight the dice?

49

5. Reading and writing data files

5.1. Introduction

In this chapter, we will discuss how to read and write data files in R. Data files are essen-
tial for storing and sharing data across different platforms and applications. R provides
a variety of functions and packages to read and write data files in different formats, such
as text files, CSV files, Excel files. By mastering these functions, you can efficiently im-
port and export data in R, enabling you to perform data analysis and visualization tasks
effectively.

5.2. CSV files

Comma-Separated Values (CSV) files are a common file format for storing tabular data.
They consist of rows and columns, with each row representing a record and each column
representing a variable or attribute. CSV files are widely used for data storage and exchange
due to their simplicity and compatibility with various software applications. In R, you can
read and write CSV files using the read.csv() and write.csv() functions, respectively.
A commonly used alternative is to use the readr package, which provides faster and more
user-friendly functions for reading and writing CSV files.

5.2.1. Writing a CSV file

Since we are going to use the readr package, we need to install it first. You can install the
readr package using the following command:

install.packages("readr")

Once the package is installed, you can load it into your R session using the library()
function:

50

5. Reading and writing data files

library(readr)

Since we don’t have a CSV file sitting around, let’s create a simple data frame to write to
a CSV file. Here’s an example data frame:

df <- data.frame(
id = c(1, 2, 3, 4, 5),
name = c("Alice", "Bob", "Charlie", "David", "Eve"),
age = c(25, 30, 35, 40, 45)

)

Now, you can write this data frame to a CSV file using the write_csv() function from
the readr package. Here’s how you can do it:

write_csv(df, "data.csv")

You can check the current working directory to see if the CSV file was created successfully.
If you want to specify a different directory or file path, you can provide the full path in
the write_csv() function.

see what the current working directory is
getwd()

[1] "/Users/seandavis/Documents/git/RBiocBook"

and check to see that the file was created
dir(pattern = "data.csv")

[1] "data.csv"

5.2.2. Reading a CSV file

Now that we have a CSV file, let’s read it back into R using the read_csv() function from
the readr package. Here’s how you can do it:

51

5. Reading and writing data files

df2 <- read_csv("data.csv")

Rows: 5 Columns: 3
-- Column specification --
Delimiter: ","
chr (1): name
dbl (2): id, age

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

You can check the structure of the data frame df2 to verify that the data was read cor-
rectly:

df2

A tibble: 5 x 3
id name age

<dbl> <chr> <dbl>
1 1 Alice 25
2 2 Bob 30
3 3 Charlie 35
4 4 David 40
5 5 Eve 45

The readr package can read CSV files with various delimiters, headers, and data types,
making it a versatile tool for handling tabular data in R. It can also read CSV files directly
from web locations like so:

df3 <- read_csv("https://data.cdc.gov/resource/pwn4-m3yp.csv")

Rows: 1000 Columns: 10
-- Column specification --
Delimiter: ","
chr (1): state
dbl (6): tot_cases, new_cases, tot_deaths, new_deaths, new_historic_cases, ...
dttm (3): date_updated, start_date, end_date

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

52

5. Reading and writing data files

The dataset that you just downloaded is described here: Covid-19 data from CDC

5.3. Excel files

Microsoft Excel files are another common file format for storing tabular data. Excel files
can contain multiple sheets, formulas, and formatting options, making them a popular
choice for data storage and analysis. In R, you can read and write Excel files using the
readxl package. This package provides functions to import and export data from Excel
files, enabling you to work with Excel data in R.

5.3.1. Reading an Excel file

To read an Excel file in R, you need to install and load the readxl package. You can install
the readxl package using the following command:

install.packages("readxl")

Once the package is installed, you can load it into your R session using the library()
function:

library(readxl)

Now, you can read an Excel file using the read_excel() function from the readxl package.
We don’t have an excel file available, so let’s download one from the internet. Here’s an
example:

download.file('https://www.w3resource.com/python-exercises/pandas/excel/SaleData.xlsx', 'SaleData.xlsx')

Now, you can read the Excel file into R using the read_excel() function:

df_excel <- read_excel("SaleData.xlsx")

You can check the structure of the data frame df_excel to verify that the data was read
correctly:

53

https://data.cdc.gov/Case-Surveillance/Weekly-United-States-COVID-19-Cases-and-Deaths-by-/pwn4-m3yp/about_data

5. Reading and writing data files

df_excel

A tibble: 45 x 8
OrderDate Region Manager SalesMan Item Units Unit_price Sale_amt
<dttm> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl>

1 2018-01-06 00:00:00 East Martha Alexander Tele~ 95 1198 113810
2 2018-01-23 00:00:00 Central Hermann Shelli Home~ 50 500 25000
3 2018-02-09 00:00:00 Central Hermann Luis Tele~ 36 1198 43128
4 2018-02-26 00:00:00 Central Timothy David Cell~ 27 225 6075
5 2018-03-15 00:00:00 West Timothy Stephen Tele~ 56 1198 67088
6 2018-04-01 00:00:00 East Martha Alexander Home~ 60 500 30000
7 2018-04-18 00:00:00 Central Martha Steven Tele~ 75 1198 89850
8 2018-05-05 00:00:00 Central Hermann Luis Tele~ 90 1198 107820
9 2018-05-22 00:00:00 West Douglas Michael Tele~ 32 1198 38336
10 2018-06-08 00:00:00 East Martha Alexander Home~ 60 500 30000
i 35 more rows

The readxl package provides various options to read Excel files with multiple sheets,
specific ranges, and data types, making it a versatile tool for handling Excel data in R.

5.3.2. Writing an Excel file

To write an Excel file in R, you can use the write_xlsx() function from the writexl
package. You can install the writexl package using the following command:

install.packages("writexl")

Once the package is installed, you can load it into your R session using the library()
function:

library(writexl)

The write_xlsx() function allows you to write a data frame to an Excel file. Here’s an
example:

write_xlsx(df, "data.xlsx")

54

5. Reading and writing data files

You can check the current working directory to see if the Excel file was created successfully.
If you want to specify a different directory or file path, you can provide the full path in
the write_xlsx() function.

see what the current working directory is
getwd()

[1] "/Users/seandavis/Documents/git/RBiocBook"

and check to see that the file was created
dir(pattern = "data.xlsx")

[1] "data.xlsx"

5.4. Additional options

• Google Sheets: You can read and write data from Google Sheets using the
googlesheets4 package. This package provides functions to interact with Google
Sheets, enabling you to import and export data from Google Sheets to R.

• JSON files: You can read and write JSON files using the jsonlite package. This
package provides functions to convert R objects to JSON format and vice versa,
enabling you to work with JSON data in R.

• Database files: You can read and write data from database files using the DBI
and RSQLite packages. These packages provide functions to interact with various
database systems, enabling you to import and export data from databases to R.

55

6. Plotting with ggplot2

The ggplot2 package is a popular data visualization package in R. It is based on the
Grammar of Graphics, a general scheme for data visualization that breaks up graphs into
semantic components such as scales and layers. The Grammar of Graphics was devel-
oped by Leland Wilkinson in 1999 and is implemented in the ggplot2 package by Hadley
Wickham.

The Grammar of Graphics is a powerful framework for creating complex visualizations by
combining simple components. Figure 6.1 illustrates the layered components of a data
visualization, each contributing to the final plot. Each layer builds upon the previous one,
though not all layers are required for every plot.
The ggplot2 package provides a flexible and intuitive interface for creating a wide range
of visualizations, from simple scatter plots to complex multi-layered plots.

This chapter provides an overview of the ggplot2 package and its implementation of the
Grammar of Graphics. We will cover the basic components of a ggplot2 plot, including
data, aesthetics, geometries, and themes.

6.1. Data

The first step in creating a ggplot2 plot is to specify the data to be visualized. The data
should be in a tidy format (Wickham (2014)), with each row representing an observation
and each column representing a variable. The insurance dataset is described in the book
Machine Learning with R by Brett Lantz. The dataset describes medical information and
costs billed by health insurance companies for 1338 individuals in 2013, as compiled by the
United States Census Bureau.

Variables include:

• age age of primary beneficiary

• sex insurance contractor gender, female, male

56

6. Plotting with ggplot2

Figure 6.1.: Components of a Data Visualization Layer Structure. This diagram from
Caron (2018) illustrates the layered components of a data visualization, each
contributing to the final plot. Each layer builds upon the previous one, culmi-
nating in a comprehensive and interpretable visualization. Layers from bottom
(foundation) to top (icing on the cake) are: 1) Data: The actual variables to
be plotted. 2) Aesthetics: Scales onto which data is mapped. 3) Geometries:
Shapes used to represent the data. 4) Facets: Rows and columns of sub-plots.
5) Statistics: Statistical models and summaries. 6) Coordinates: Plotting
space for the data. 7) Theme: Describes all the non-data ink.

57

6. Plotting with ggplot2

• bmi Body mass index, providing an understanding of body, weights that are relatively
high or low relative to height, objective index of body weight (kg / m ^ 2) using
the ratio of height to weight, ideally 18.5 to 24.9

• children Number of children covered by health insurance / Number of dependents

• smoker Smoking status

• region the beneficiary’s residential area in the US, northeast, southeast, southwest,
northwest.

• charges Individual medical costs billed by health insurance

We will load the data directly from the web, but you can also download the data from the
link at github1.

insurance_url <- "https://raw.githubusercontent.com/stedy/Machine-Learning-with-R-datasets/master/insurance.csv"
insurance <- read.csv(insurance_url)

Explore the dataset a bit to understand its structure and contents. For example, you can
use the head() function to view the first few rows of the dataset.

head(insurance)

age sex bmi children smoker region charges
1 19 female 27.900 0 yes southwest 16884.924
2 18 male 33.770 1 no southeast 1725.552
3 28 male 33.000 3 no southeast 4449.462
4 33 male 22.705 0 no northwest 21984.471
5 32 male 28.880 0 no northwest 3866.855
6 31 female 25.740 0 no southeast 3756.622

And you can examine the dimensions of the dataset using the dim(), which returns the
number of rows and columns in the dataset, the ncol() function, which returns the number
of columns, and the nrow() function, which returns the number of rows.

dim(insurance)

[1] 1338 7
1Insurance data csv file, https://raw.githubusercontent.com/stedy/Machine-Learning-with-R-datasets/

master/insurance.csv

58

https://raw.githubusercontent.com/stedy/Machine-Learning-with-R-datasets/master/insurance.csv
https://raw.githubusercontent.com/stedy/Machine-Learning-with-R-datasets/master/insurance.csv

6. Plotting with ggplot2

ncol(insurance)

[1] 7

nrow(insurance)

[1] 1338

Note that with the dim() function, the number of rows is given first, followed by the
number of columns.

Notice that, while the BMI variable represents a measure of a person’s weight relative to
their height, there is no discrete variable for whether a person is obese or not. The World
Health Organization (WHO) defines obesity as a BMI greater than or equal to 30. We
can create a new variable, obese, that indicates whether a person is obese based on their
BMI.

insurance$obese <- ifelse(insurance$bmi >= 30, "obese", "not obese")

If we examine the dataset again, we can see that the new variable obese has been added
to the dataset.

head(insurance)

age sex bmi children smoker region charges obese
1 19 female 27.900 0 yes southwest 16884.924 not obese
2 18 male 33.770 1 no southeast 1725.552 obese
3 28 male 33.000 3 no southeast 4449.462 obese
4 33 male 22.705 0 no northwest 21984.471 not obese
5 32 male 28.880 0 no northwest 3866.855 not obese
6 31 female 25.740 0 no southeast 3756.622 not obese

6.2. Aesthetics

The next step in creating a ggplot2 plot is to specify the aesthetics of the plot. Aesthetics
are visual properties of the plot that map data to visual elements.

59

6. Plotting with ggplot2

specify dataset and mapping
library(ggplot2)
ggplot(

data = insurance,
mapping = aes(x = age, y = charges)

)

0

20000

40000

60000

20 30 40 50 60
age

ch
ar

ge
s

Figure 6.2.: A plot with age on the x-axis and charges on the y-axis.

In the code above, the data are the data to be visualized, and the mapping specifies how
the data should be mapped to the plot. In this case, the x aesthetic is mapped to the age
variable, and the y aesthetic is mapped to the charges variable. Note that there are no
data displayed in Figure 6.2 yet; we have only specified the data and aesthetics. However,
you can see the structure of the plot in the output, which shows the data and aesthetics
that have been specified with age on the x-axis and charges on the y-axis.

6.3. Geometries

The next step is to add a geometry to the plot. Geometries are the visual representations
of the data, such as points, lines, or bars. Since this is a scatter plot, we will use the

60

6. Plotting with ggplot2

geom_point() function to add points to the plot.

add points to the plot
ggplot(

data = insurance,
mapping = aes(x = age, y = charges)

) +
geom_point()

0

20000

40000

60000

20 30 40 50 60
age

ch
ar

ge
s

Figure 6.3.: A scatter plot with age on the x-axis and charges on the y-axis results from
adding geom_point() to the plot.

Note

When using ggplot2, the + operator is used to add layers to the plot. The ggplot()
function specifies the data and aesthetics, and the geom_point() function adds points
to the plot. Using the + operator is a common practice in ggplot2 to add layers to
a plot, but the + operator does not work for other types of plots in R.

Using other geometries, you can create different types of plots. For example, you can use
geom_line() to create a line plot, geom_bar() to create a bar plot, or geom_boxplot()

61

6. Plotting with ggplot2

to create a box plot. Before doing so here, ask yourself if those geometries would be
appropriate for the data you are working with.

A number of parameters (options) can be specified in a geom_ function. Options for the
geom_point() function include color, size, and alpha. These control the point color, size,
and transparency, respectively. Transparency ranges from 0 (completely transparent) to
1 (completely opaque). Adding a degree of transparency can help visualize overlapping
points such as in Figure 6.4.

add points to the plot
ggplot(

data = insurance,
mapping = aes(x = age, y = charges)

) +
geom_point(

color = "blue",
size = 3,
alpha = 0.3

)

0

20000

40000

60000

20 30 40 50 60
age

ch
ar

ge
s

Figure 6.4.: A scatter plot with age on the x-axis and charges on the y-axis with colored
points, larger size, and transparency.

62

6. Plotting with ggplot2

We can add a best fit line to the scatter plot using the geom_smooth() function. The
method parameter specifies the method used to fit the line. In this case, we will use the
default method, which is linear regression, specified by method = "lm". The lmmethod fits
a linear model to the data, which in this case is simple linear regression 2 of the dependent
variable charges as a function of the independent variable age. The result is shown in
Figure 6.5.

add points and a best fit line to the plot
ggplot(

data = insurance,
mapping = aes(x = age, y = charges)

) +
geom_point(

color = "blue",
alpha = 0.3

) +
geom_smooth(method = "lm")

`geom_smooth()` using formula = 'y ~ x'

2The linear regression model is of the form 𝑐ℎ𝑎𝑟𝑔𝑒𝑠 = 𝛼 + 𝛽 ∗ 𝑎𝑔𝑒 + 𝜖 where 𝛼 is the intercept, 𝛽 is the
slope, and 𝜖 is the “error”.

63

6. Plotting with ggplot2

0

20000

40000

60000

20 30 40 50 60
age

ch
ar

ge
s

Figure 6.5.: A scatter plot with age on the x-axis and charges on the y-axis with a best fit
line.

What do you observe in Figure 6.5 with the best fit line? How well does the line fit the
data? Do you think a linear model is appropriate for this data?

6.4. Grouping

In addition to mapping variables to the x and y axes [i.e., aes(x = ..., y=...)], variables
can be mapped to the color, shape, size, transparency, and other visual characteristics of
geometric objects. This allows groups of observations to be superimposed in a single
graph.

For example, we can map the smoker variable to the color of the points in the scatter plot.
The result is shown in Figure 6.6.

add points to the plot, colored by the smoker variable
ggplot(

data = insurance,
mapping = aes(x = age, y = charges, color = smoker)

64

6. Plotting with ggplot2

) +
geom_point()

0

20000

40000

60000

20 30 40 50 60
age

ch
ar

ge
s smoker

no

yes

Figure 6.6.: A scatter plot with age on the x-axis and charges on the y-axis with points
colored by the smoker variable.

In Figure 6.6, the points are colored based on the smoker variable, with smokers in orange
and non-smokers in blue. This allows us to visually compare the charges of smokers and
non-smokers as a function of age.

If we add back in the best fit line, we can see how the relationship between age and charges
differs between smokers and non-smokers. The result is shown in Figure 6.7.

add points to the plot, colored by the smoker variable, and a best fit line
ggplot(

data = insurance,
mapping = aes(x = age, y = charges, color = smoker)

) +
geom_point() +
geom_smooth(method = "lm")

65

6. Plotting with ggplot2

`geom_smooth()` using formula = 'y ~ x'

0

20000

40000

60000

20 30 40 50 60
age

ch
ar

ge
s smoker

no

yes

Figure 6.7.: A scatter plot with age on the x-axis and charges on the y-axis with points
colored by the smoker variable and a best fit line.

How well does the best fit line fit the data for smokers and non-smokers? Do you see any
differences in the relationship between age and charges for smokers and non-smokers?

6.5. Facets

Facets are a way to create multiple plots based on the levels of a categorical variable. In
other words, facets allow you to create a grid of plots, with each plot showing a different
subset of the data based on the levels of a categorical variable.

In Figure 6.7, we noticed that there are still two groups of points, even when looking at
just smokers. We can further separate the data by the obese variable, creating a grid of
plots with one plot for each combination of smoker and obese status.

66

6. Plotting with ggplot2

add points to the plot, colored by the smoker variable, and faceted by the obese variable
ggplot(

data = insurance,
mapping = aes(x = age, y = charges, color = smoker)

) +
geom_point() +
geom_smooth(method = "lm") +
facet_wrap(~obese)

`geom_smooth()` using formula = 'y ~ x'

not obese obese

20 30 40 50 60 20 30 40 50 60

0

20000

40000

60000

age

ch
ar

ge
s smoker

no

yes

Figure 6.8.: A grid of scatter plots with age on the x-axis and charges on the y-axis, colored
by the smoker variable, and faceted by the obese variable.

The way that we interpret the facet_wrap(~ obese) command is that we want to create
a grid of plots, with each plot showing a different subset of the data based on the levels of
the obese variable. In this case, we have two levels of the obese variable: obese and not
obese, so we get two plots in the grid.

67

6. Plotting with ggplot2

6.6. Labels

Labels are an important part of any plot. They help the viewer understand what the plot
is showing and what the axes represent. While our plot already has labels for the x and
y axes, we can add a title to the plot and change the labels for the x and y axes to make
them more descriptive.

add points to the plot, colored by the smoker variable, faceted by the obese variable, and add labels
ggplot(

data = insurance,
mapping = aes(x = age, y = charges, color = smoker)

) +
geom_point() +
geom_smooth(method = "lm") +
facet_wrap(~obese) +
labs(

title = "Medical Charges as a function of patient characteristics",
subtitle = "US Census Bureau 2013 data",
caption = "Source: https://github.com/stedy/Machine-Learning-with-R-datasets",
x = "Age",
y = "Annual Medical Charges",
color = "Smoker?"

)

`geom_smooth()` using formula = 'y ~ x'

68

6. Plotting with ggplot2

not obese obese

20 30 40 50 60 20 30 40 50 60
0

20000

40000

60000

Age

A
nn

ua
l M

ed
ic

al
 C

ha
rg

es

Smoker?

no

yes

US Census Bureau 2013 data

Medical Charges as a function of patient characteristics

Source: https://github.com/stedy/Machine−Learning−with−R−datasets

Figure 6.9.: A scatter plot with age on the x-axis and charges on the y-axis, colored by the
smoker variable, and faceted by the obese variable, with labels.

6.7. Themes

Themes are a way to control the non-data ink in a plot, such as the background color,
grid lines, and text size. Rather than specifying each element individually, you can use a
pre-defined theme to quickly style your plot. For a nice overview of themes in ggplot2,
see the the ggplot2 themes gallery.

To create a more visually appealing plot, we can apply the theme_minimal() theme to our
plot. This theme removes the background grid lines and adds a light gray background to
the plot.

add points to the plot, colored by the smoker variable, faceted by the obese variable, add labels, and apply a minimal theme
ggplot(

data = insurance,
mapping = aes(x = age, y = charges, color = smoker)

) +
geom_point() +
geom_smooth(method = "lm") +

69

https://r-charts.com/ggplot2/themes/

6. Plotting with ggplot2

facet_wrap(~obese) +
labs(

title = "Medical Charges as a function of patient characteristics",
subtitle = "US Census Bureau 2013 data",
caption = "Source: https://github.com/stedy/Machine-Learning-with-R-datasets",
x = "Age",
y = "Annual Medical Charges",
color = "Smoker?"

) +
theme_minimal()

`geom_smooth()` using formula = 'y ~ x'

not obese obese

20 30 40 50 60 20 30 40 50 60
0

20000

40000

60000

Age

A
nn

ua
l M

ed
ic

al
 C

ha
rg

es

Smoker?

no

yes

US Census Bureau 2013 data

Medical Charges as a function of patient characteristics

Source: https://github.com/stedy/Machine−Learning−with−R−datasets

Figure 6.10.: A scatter plot with age on the x-axis and charges on the y-axis, colored by
the smoker variable, faceted by the obese variable, with labels and a minimal
theme.

70

References

6.8. Saving a Plot

Once you have created a plot that you are happy with, you may want to save it to a file
for use in a report or presentation. The ggsave() function in ggplot2 allows you to save
a plot to a file in a variety of formats, including PNG, PDF, and SVG. Take a look at the
help for ggsave() to see the available options. In particular, you can specify the file name,
width, height, and resolution of the saved plot.

save the plot to a file
ggsave("insurance_plot.png")

Saving 5.5 x 3.5 in image
`geom_smooth()` using formula = 'y ~ x'

Note

The ggsave() function saves the last plot that you created with ggplot2. ggsave()
will save the plot to the working directory by default, but you can specify a different
directory by providing the full path to the file name.

References

Bourgon, Richard, Robert Gentleman, and Wolfgang Huber. 2010. “Independent Fil-
tering Increases Detection Power for High-Throughput Experiments.” Proceedings of
the National Academy of Sciences 107 (21): 9546–51. https://doi.org/10.1073/pnas.
0914005107.

Brouwer-Visser, Jurriaan, Wei-Yi Cheng, Anna Bauer-Mehren, Daniela Maisel, Katharina
Lechner, Emilia Andersson, Joel T. Dudley, and Francesca Milletti. 2018. “Regulatory
T-Cell Genes Drive Altered Immune Microenvironment in Adult Solid Cancers and
Allow for Immune Contextual Patient Subtyping.” Cancer Epidemiology, Biomarkers
& Prevention 27 (1): 103–12. https://doi.org/10.1158/1055-9965.EPI-17-0461.

Buenrostro, Jason D, Paul G Giresi, Lisa C Zaba, Howard Y Chang, and William J Green-
leaf. 2013. “Transposition of Native Chromatin for Fast and Sensitive Epigenomic
Profiling of Open Chromatin, DNA-binding Proteins and Nucleosome Position.” Na-
ture Methods 10 (12): 1213–18. https://doi.org/10.1038/nmeth.2688.

Buenrostro, Jason D, Beijing Wu, Howard Y Chang, and William J Greenleaf. 2015.
“ATAC-seq: A Method for Assaying Chromatin Accessibility Genome-Wide.” Current

71

https://doi.org/10.1073/pnas.0914005107
https://doi.org/10.1073/pnas.0914005107
https://doi.org/10.1158/1055-9965.EPI-17-0461
https://doi.org/10.1038/nmeth.2688

References

Protocols in Molecular Biology / Edited by Frederick M. Ausubel ... [Et Al.] 109
(January): 21.29.1–9. https://doi.org/10.1002/0471142727.mb2129s109.

Caron, Stéphane. 2018. “The Grammar of Graphics.” https://dotlayer.org/en/grammar-
of-graphics/.

Center, Pew Research. 2016. “Lifelong Learning and Technology.” Pew Research Center:
Internet, Science & Tech. https://www.pewresearch.org/internet/2016/03/22/lifelong-
learning-and-technology/.

Crawford, Gregory E, Sean Davis, Peter C Scacheri, Gabriel Renaud, Mohamad J Ha-
lawi, Michael R Erdos, Roland Green, Paul S Meltzer, Tyra G Wolfsberg, and Fran-
cis S Collins. 2006. “DNase-chip: A High-Resolution Method to Identify DNase I
Hypersensitive Sites Using Tiled Microarrays.” Nature Methods 3 (7): 503–9. http:
//www.ncbi.nlm.nih.gov/pubmed/16791207?dopt=AbstractPlus.

Crawford, Gregory E, Ingeborg E Holt, James Whittle, Bryn D Webb, Denise Tai, Sean
Davis, Elliott H Margulies, et al. 2006. “Genome-Wide Mapping of DNase Hypersen-
sitive Sites Using Massively Parallel Signature Sequencing (MPSS).” Genome Research
16 (1): 123–31. http://www.ncbi.nlm.nih.gov/pubmed/16344561?dopt=AbstractPlus.

DeRisi, J. L., V. R. Iyer, and P. O. Brown. 1997. “Exploring the Metabolic and Genetic
Control of Gene Expression on a Genomic Scale.” Science (New York, N.Y.) 278 (5338):
680–86. https://doi.org/10.1126/science.278.5338.680.

Greener, Joe G., Shaun M. Kandathil, Lewis Moffat, and David T. Jones. 2022. “A Guide
to Machine Learning for Biologists.” Nature Reviews Molecular Cell Biology 23 (1):
40–55. https://doi.org/10.1038/s41580-021-00407-0.

Knowles, Malcolm S., Elwood F. Holton, and Richard A. Swanson. 2005. The Adult
Learner: The Definitive Classic in Adult Education and Human Resource Development.
6th ed. Amsterdam ; Boston: Elsevier.

Lawrence, Michael, Wolfgang Huber, Hervé Pagès, Patrick Aboyoun, Marc Carlson, Robert
Gentleman, Martin T Morgan, and Vincent J Carey. 2013. “Software for Computing
and Annotating Genomic Ranges.” PLoS Computational Biology 9 (8): e1003118. https:
//doi.org/10.1371/journal.pcbi.1003118.

Libbrecht, Maxwell W., and William Stafford Noble. 2015. “Machine Learning Appli-
cations in Genetics and Genomics.” Nature Reviews Genetics 16 (6): 321–32. https:
//doi.org/10.1038/nrg3920.

Morgan, Martin, Herve Pages, V Obenchain, and N Hayden. 2016. “Rsamtools: Binary
Alignment (BAM), FASTA, Variant Call (BCF), and Tabix File Import.” R Package
Version 1 (0): 677–89.

Student. 1908. “The Probable Error of a Mean.” Biometrika 6 (1): 1–25. https://doi.org/
10.2307/2331554.

Tsompana, Maria, and Michael J Buck. 2014. “Chromatin Accessibility: A Window into
the Genome.” Epigenetics & Chromatin 7 (1): 33. https://doi.org/10.1186/1756-8935-
7-33.

Wickham, Hadley. 2014. “Tidy Data.” Journal of Statistical Software, Articles 59 (10):

72

https://doi.org/10.1002/0471142727.mb2129s109
https://dotlayer.org/en/grammar-of-graphics/
https://dotlayer.org/en/grammar-of-graphics/
https://www.pewresearch.org/internet/2016/03/22/lifelong-learning-and-technology/
https://www.pewresearch.org/internet/2016/03/22/lifelong-learning-and-technology/
http://www.ncbi.nlm.nih.gov/pubmed/16791207?dopt=AbstractPlus
http://www.ncbi.nlm.nih.gov/pubmed/16791207?dopt=AbstractPlus
http://www.ncbi.nlm.nih.gov/pubmed/16344561?dopt=AbstractPlus
https://doi.org/10.1126/science.278.5338.680
https://doi.org/10.1038/s41580-021-00407-0
https://doi.org/10.1371/journal.pcbi.1003118
https://doi.org/10.1371/journal.pcbi.1003118
https://doi.org/10.1038/nrg3920
https://doi.org/10.1038/nrg3920
https://doi.org/10.2307/2331554
https://doi.org/10.2307/2331554
https://doi.org/10.1186/1756-8935-7-33
https://doi.org/10.1186/1756-8935-7-33

References

1–23. https://doi.org/10.18637/jss.v059.i10.

73

https://doi.org/10.18637/jss.v059.i10

Part II.

R Data Structures

74

Chapter overview

Welcome to the section on R data structures! As you begin your journey in learning R, it
is essential to understand the fundamental building blocks of this powerful programming
language. R offers a variety of data structures to store and manipulate data, each with its
unique properties and capabilities. In this section, we will cover the core data structures
in R, including:

• Vectors
• Matrices
• Lists
• Data.frames

By the end of this section, you will have a solid understanding of these data structures,
and you will be able to choose and utilize the appropriate data structure for your specific
data manipulation and analysis tasks.

In each chapter, we will delve into the properties and usage of each data structure, starting
with their definitions and moving on to their practical applications. We will provide ex-
amples, exercises, and active learning approaches to help you better understand and apply
these concepts in your work.

Chapter overview

• Vectors : In this chapter, we will introduce you to the simplest data structure in R,
the vector. We will cover how to create, access, and manipulate vectors, as well as
discuss their unique properties and limitations.

• Matrices Next, we will explore matrices, which are two-dimensional data structures
that extend vectors. You will learn how to create, access, and manipulate ma-
trices, and understand their usefulness in mathematical operations and data
organization.

• Lists The third chapter will focus on lists, a versatile data structure that can store
elements of different types and sizes. We will discuss how to create, access,
and modify lists, and demonstrate their flexibility in handling complex data
structures.

• Data.frames Finally, we will examine data.frames, a widely-used data structure for
organizing and manipulating tabular data. You will learn how to create, access,
and manipulate data.frames, and understand their advantages over other data
structures for data analysis tasks.

75

Chapter overview

Figure 6.11.: A pictorial representation of R’s most common data structures are vectors,
matrices, arrays, lists, and dataframes. Figure from Hands-on Programming
with R.

76

https://rstudio-education.github.io/hopr/
https://rstudio-education.github.io/hopr/

Chapter overview

• Arrays While we will not focus directly on the array data type, which are multidimen-
sional data structures that extend matrices, they are very similar to matrices,
but with a third dimension.

As you progress through these chapters, practice the examples and exercises provided,
engage in discussion, and collaborate with your peers to deepen your understanding of
R data structures. This solid foundation will serve as the basis for more advanced data
manipulation, analysis, and visualization techniques in R.

77

7. Vectors

7.1. What is a Vector?

A vector is the simplest and most basic data structure in R. It is a one-dimensional, ordered
collection of elements, where all the elements are of the same data type. Vectors can store
various types of data, such as numeric, character, or logical values. Figure 7.1 shows a
pictorial representation of three vector examples.

Figure 7.1.: “Pictorial representation of three vector examples. The first vector is a numeric
vector. The second is a ‘logical’ vector. The third is a character vector. Vectors
also have indices and, optionally, names.”

In this chapter, we will provide a comprehensive overview of vectors, including how to
create, access, and manipulate them. We will also discuss some unique properties and
rules associated with vectors, and explore their applications in data analysis tasks.

In R, even a single value is a vector with length=1.

78

7. Vectors

z = 1
z

[1] 1

length(z)

[1] 1

In the code above, we “assigned” the value 1 to the variable named z. Typing z by itself is
an “expression” that returns a result which is, in this case, the value that we just assigned.
The length method takes an R object and returns the R length. There are numerous ways
of asking R about what an object represents, and length is one of them.

Vectors can contain numbers, strings (character data), or logical values (TRUE and FALSE)
or other “atomic” data types Table 7.1. Vectors cannot contain a mix of types! We will
introduce another data structure, the R list for situations when we need to store a mix
of base R data types.

Table 7.1.: Atomic (simplest) data types in R.
Data type Stores
numeric floating point numbers
integer integers
complex complex numbers
factor categorical data
character strings
logical TRUE or FALSE
NA missing
NULL empty
function function type

7.2. Creating vectors

Character vectors (also sometimes called “string” vectors) are entered with each value
surrounded by single or double quotes; either is acceptable, but they must match. They are
always displayed by R with double quotes. Here are some examples of creating vectors:

79

7. Vectors

examples of vectors
c('hello','world')

[1] "hello" "world"

c(1,3,4,5,1,2)

[1] 1 3 4 5 1 2

c(1.12341e7,78234.126)

[1] 11234100.00 78234.13

c(TRUE,FALSE,TRUE,TRUE)

[1] TRUE FALSE TRUE TRUE

note how in the next case the TRUE is converted to "TRUE"
with quotes around it.
c(TRUE,'hello')

[1] "TRUE" "hello"

We can also create vectors as “regular sequences” of numbers. For example:

create a vector of integers from 1 to 10
x = 1:10
and backwards
x = 10:1

The seq function can create more flexible regular sequences.

create a vector of numbers from 1 to 4 skipping by 0.3
y = seq(1,4,0.3)

And creating a new vector by concatenating existing vectors is possible, as well.

80

7. Vectors

create a sequence by concatenating two other sequences
z = c(y,x)
z

[1] 1.0 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4.0 10.0 9.0 8.0 7.0
[16] 6.0 5.0 4.0 3.0 2.0 1.0

7.3. Vector Operations

Operations on a single vector are typically done element-by-element. For example, we can
add 2 to a vector, 2 is added to each element of the vector and a new vector of the same
length is returned.

x = 1:10
x + 2

[1] 3 4 5 6 7 8 9 10 11 12

If the operation involves two vectors, the following rules apply. If the vectors are the same
length: R simply applies the operation to each pair of elements.

x + x

[1] 2 4 6 8 10 12 14 16 18 20

If the vectors are different lengths, but one length a multiple of the other, R reuses the
shorter vector as needed.

x = 1:10
y = c(1,2)
x * y

[1] 1 4 3 8 5 12 7 16 9 20

If the vectors are different lengths, but one length not a multiple of the other, R reuses the
shorter vector as needed and delivers a warning.

81

7. Vectors

x = 1:10
y = c(2,3,4)
x * y

Warning in x * y: longer object length is not a multiple of shorter object
length

[1] 2 6 12 8 15 24 14 24 36 20

Typical operations include multiplication (“*”), addition, subtraction, division, exponentia-
tion (“^”), but many operations in R operate on vectors and are then called “vectorized”.

Be aware of the recycling rule when working with vectors of different lengths, as it may
lead to unexpected results if you’re not careful.

7.4. Logical Vectors

Logical vectors are vectors composed on only the values TRUE and FALSE. Note the all-
upper-case and no quotation marks.

a = c(TRUE,FALSE,TRUE)

we can also create a logical vector from a numeric vector
0 = false, everything else is 1
b = c(1,0,217)
d = as.logical(b)
d

[1] TRUE FALSE TRUE

test if a and d are the same at every element
all.equal(a,d)

[1] TRUE

82

7. Vectors

We can also convert from logical to numeric
as.numeric(a)

[1] 1 0 1

7.4.1. Logical Operators

Some operators like <, >, ==, >=, <=, != can be used to create logical vectors.

create a numeric vector
x = 1:10
testing whether x > 5 creates a logical vector
x > 5

[1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE

x <= 5

[1] TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE

x != 5

[1] TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE

x == 5

[1] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

We can also assign the results to a variable:

y = (x == 5)
y

[1] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

83

7. Vectors

7.5. Indexing Vectors

In R, an index is used to refer to a specific element or set of elements in an vector (or other
data structure). [R uses [and] to perform indexing, although other approaches to getting
subsets of larger data structures are common in R.

x = seq(0,1,0.1)
create a new vector from the 4th element of x
x[4]

[1] 0.3

We can even use other vectors to perform the “indexing”.

x[c(3,5,6)]

[1] 0.2 0.4 0.5

y = 3:6
x[y]

[1] 0.2 0.3 0.4 0.5

Combining the concept of indexing with the concept of logical vectors results in a very
power combination.

use help('rnorm') to figure out what is happening next
myvec = rnorm(10)

create logical vector that is TRUE where myvec is >0.25
gt1 = (myvec > 0.25)
sum(gt1)

[1] 4

84

7. Vectors

and use our logical vector to create a vector of myvec values that are >0.25
myvec[gt1]

[1] 1.1484509 1.1463211 0.7716711 0.2969809

or <=0.25 using the logical "not" operator, "!"
myvec[!gt1]

[1] -0.4014349 -0.5081373 -0.4925580 -1.6429488 -0.1851662 -1.0668761

shorter, one line approach
myvec[myvec > 0.25]

[1] 1.1484509 1.1463211 0.7716711 0.2969809

7.6. Named Vectors

Named vectors are vectors with labels or names assigned to their elements. These names
can be used to access and manipulate the elements in a more meaningful way.

To create a named vector, use the names() function:

fruit_prices <- c(0.5, 0.75, 1.25)
names(fruit_prices) <- c("apple", "banana", "cherry")
print(fruit_prices)

apple banana cherry
0.50 0.75 1.25

You can also access and modify elements using their names:

banana_price <- fruit_prices["banana"]
print(banana_price)

banana
0.75

85

7. Vectors

fruit_prices["apple"] <- 0.6
print(fruit_prices)

apple banana cherry
0.60 0.75 1.25

7.7. Character Vectors, A.K.A. Strings

R uses the paste function to concatenate strings.

paste("abc","def")

[1] "abc def"

paste("abc","def",sep="THISSEP")

[1] "abcTHISSEPdef"

paste0("abc","def")

[1] "abcdef"

[1] "abcdef"
paste(c("X","Y"),1:10)

[1] "X 1" "Y 2" "X 3" "Y 4" "X 5" "Y 6" "X 7" "Y 8" "X 9" "Y 10"

paste(c("X","Y"),1:10,sep="_")

[1] "X_1" "Y_2" "X_3" "Y_4" "X_5" "Y_6" "X_7" "Y_8" "X_9" "Y_10"

We can count the number of characters in a string.

86

7. Vectors

nchar('abc')

[1] 3

nchar(c('abc','d',123456))

[1] 3 1 6

Pulling out parts of strings is also sometimes useful.

substr('This is a good sentence.',start=10,stop=15)

[1] " good "

Another common operation is to replace something in a string with something (a find-and-
replace).

sub('This','That','This is a good sentence.')

[1] "That is a good sentence."

When we want to find all strings that match some other string, we can use grep, or “grab
regular expression”.

grep('bcd',c('abcdef','abcd','bcde','cdef','defg'))

[1] 1 2 3

grep('bcd',c('abcdef','abcd','bcde','cdef','defg'),value=TRUE)

[1] "abcdef" "abcd" "bcde"

Read about the grepl function (?grepl). Use that function to return a logical vector
(TRUE/FALSE) for each entry above with an a in it.

87

7. Vectors

7.8. Missing Values, AKA “NA”

R has a special value, “NA”, that represents a “missing” value, or Not Available, in a vector
or other data structure. Here, we just create a vector to experiment.

x = 1:5
x

[1] 1 2 3 4 5

length(x)

[1] 5

is.na(x)

[1] FALSE FALSE FALSE FALSE FALSE

x[2] = NA
x

[1] 1 NA 3 4 5

The length of x is unchanged, but there is one value that is marked as “missing” by virtue
of being NA.

length(x)

[1] 5

is.na(x)

[1] FALSE TRUE FALSE FALSE FALSE

We can remove NA values by using indexing. In the following, is.na(x) returns a logical
vector the length of x. The ! is the logical NOT operator and converts TRUE to FALSE and
vice-versa.

88

7. Vectors

x[!is.na(x)]

[1] 1 3 4 5

7.9. Exercises

1. Create a numeric vector called temperatures containing the following values: 72, 75,
78, 81, 76, 73.
temperatures <- c(72, 75, 78, 81, 76, 73, 93)

2. Create a character vector called days containing the following values: “Monday”,
“Tuesday”, “Wednesday”, “Thursday”, “Friday”, “Saturday”, “Sunday”.
days <- c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday")

3. Calculate the average temperature for the week and store it in a variable called
average_temperature.
average_temperature <- mean(temperatures)

4. Create a named vector called weekly_temperatures, where the names are the days
of the week and the values are the temperatures from the temperatures vector.
weekly_temperatures <- temperatures
names(weekly_temperatures) <- days

5. Create a numeric vector called ages containing the following values: 25, 30, 35, 40,
45, 50, 55, 60.
ages <- c(25, 30, 35, 40, 45, 50, 55, 60)

6. Create a logical vector called is_adult by checking if the elements in the ages vector
are greater than or equal to 18.
is_adult <- ages >= 18

7. Calculate the sum and product of the ages vector.
sum_ages <- sum(ages)
product_ages <- prod(ages)

89

7. Vectors

8. Extract the ages greater than or equal to 40 from the ages vector and store them in
a variable called older_ages.
older_ages <- ages[ages >= 40]

90

8. Matrices

A matrix is a rectangular collection of the same data type (see Figure 8.1). It can be viewed
as a collection of column vectors all of the same length and the same type (i.e. numeric,
character or logical) OR a collection of row vectors, again all of the same type and length.
A data.frame is also a rectangular array. All of the columns must be the same length, but
they may be of different types. The rows and columns of a matrix or data frame can be
given names. However these are implemented differently in R; many operations will work
for one but not both, often a source of confusion.

Figure 8.1.: A matrix is a collection of column vectors.

8.1. Creating a matrix

There are many ways to create a matrix in R. One of the simplest is to use the matrix()
function. In the code below, we’ll create a matrix from a vector from 1:16.

91

8. Matrices

mat1 <- matrix(1:16,nrow=4)
mat1

[,1] [,2] [,3] [,4]
[1,] 1 5 9 13
[2,] 2 6 10 14
[3,] 3 7 11 15
[4,] 4 8 12 16

The same is possible, but specifying that the matrix be “filled” by row.

mat1 <- matrix(1:16,nrow=4,byrow = TRUE)
mat1

[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8
[3,] 9 10 11 12
[4,] 13 14 15 16

Notice the subtle difference in the order that the numbers go into the matrix.

We can also build a matrix from parts by “binding” vectors together:

x <- 1:10
y <- rnorm(10)

Each of the vectors above is of length 10 and both are “numeric”, so we can make them
into a matrix. Using rbind binds rows (r) into a matrix.

mat <- rbind(x,y)
mat

[,1] [,2] [,3] [,4] [,5] [,6] [,7]
x 1.0000000 2.0000000 3.0000000 4.0000000 5.0000000 6.000000 7.0000000
y -0.1007675 0.5519366 0.4488688 0.3981466 0.8524107 -1.027999 -0.6854053

[,8] [,9] [,10]
x 8.0000000 9.0000000 10.0000000
y 0.4897315 -0.2333974 0.7278752

92

8. Matrices

The alternative to rbind is cbind that binds columns (c) together.

mat <- cbind(x,y)
mat

x y
[1,] 1 -0.1007675
[2,] 2 0.5519366
[3,] 3 0.4488688
[4,] 4 0.3981466
[5,] 5 0.8524107
[6,] 6 -1.0279989
[7,] 7 -0.6854053
[8,] 8 0.4897315
[9,] 9 -0.2333974
[10,] 10 0.7278752

Inspecting the names associated with rows and columns is often useful, particularly if the
names have human meaning.

rownames(mat)

NULL

colnames(mat)

[1] "x" "y"

We can also change the names of the matrix by assigning valid names to the columns or
rows.

colnames(mat) = c('apples','oranges')
colnames(mat)

[1] "apples" "oranges"

93

8. Matrices

mat

apples oranges
[1,] 1 -0.1007675
[2,] 2 0.5519366
[3,] 3 0.4488688
[4,] 4 0.3981466
[5,] 5 0.8524107
[6,] 6 -1.0279989
[7,] 7 -0.6854053
[8,] 8 0.4897315
[9,] 9 -0.2333974
[10,] 10 0.7278752

Matrices have dimensions.

dim(mat)

[1] 10 2

nrow(mat)

[1] 10

ncol(mat)

[1] 2

8.2. Accessing elements of a matrix

Indexing for matrices works as for vectors except that we now need to include both the row
and column (in that order). We can access elements of a matrix using the square bracket
[indexing method. Elements can be accessed as var[r, c]. Here, r and c are vectors
describing the elements of the matrix to select.

94

8. Matrices

Important

The indices in R start with one, meaning that the first element of a vector or the first
row/column of a matrix is indexed as one.
This is different from some other programming languages, such as Python, which use
zero-based indexing, meaning that the first element of a vector or the first row/column
of a matrix is indexed as zero.
It is important to be aware of this difference when working with data in R, especially
if you are coming from a programming background that uses zero-based indexing.
Using the wrong index can lead to unexpected results or errors in your code.

The 2nd element of the 1st row of mat
mat[1,2]

oranges
-0.1007675

The first ROW of mat
mat[1,]

apples oranges
1.0000000 -0.1007675

The first COLUMN of mat
mat[,1]

[1] 1 2 3 4 5 6 7 8 9 10

and all elements of mat that are > 4; note no comma
mat[mat>4]

[1] 5 6 7 8 9 10

[1] 5 6 7 8 9 10

95

8. Matrices

Caution

Note that in the last case, there is no “,”, so R treats the matrix as a long vector
(length=20). This is convenient, sometimes, but it can also be a source of error, as
some code may “work” but be doing something unexpected.

We can also use indexing to exclude a row or column by prefixing the selection with a -
sign.

mat[,-1] # remove first column

[1] -0.1007675 0.5519366 0.4488688 0.3981466 0.8524107 -1.0279989
[7] -0.6854053 0.4897315 -0.2333974 0.7278752

mat[-c(1:5),] # remove first five rows

apples oranges
[1,] 6 -1.0279989
[2,] 7 -0.6854053
[3,] 8 0.4897315
[4,] 9 -0.2333974
[5,] 10 0.7278752

8.3. Changing values in a matrix

We can create a matrix filled with random values drawn from a normal distribution for our
work below.

m = matrix(rnorm(20),nrow=10)
summary(m)

V1 V2
Min. :-2.1707 Min. :-1.78021
1st Qu.:-1.4913 1st Qu.:-0.68510
Median :-0.1734 Median :-0.37670
Mean :-0.1912 Mean :-0.04895
3rd Qu.: 0.5173 3rd Qu.: 0.96281
Max. : 2.6163 Max. : 1.39484

96

8. Matrices

Multiplication and division works similarly to vectors. When multiplying by a vector, for
example, the values of the vector are reused. In the simplest case, let’s multiply the matrix
by a constant (vector of length 1).

multiply all values in the matrix by 20
m2 = m*20
summary(m2)

V1 V2
Min. :-43.414 Min. :-35.604
1st Qu.:-29.826 1st Qu.:-13.702
Median : -3.467 Median : -7.534
Mean : -3.823 Mean : -0.979
3rd Qu.: 10.347 3rd Qu.: 19.256
Max. : 52.326 Max. : 27.897

By combining subsetting with assignment, we can make changes to just part of a matrix.

and add 100 to the first column of m
m2[,1] = m2[,1] + 100
summarize m
summary(m2)

V1 V2
Min. : 56.59 Min. :-35.604
1st Qu.: 70.17 1st Qu.:-13.702
Median : 96.53 Median : -7.534
Mean : 96.18 Mean : -0.979
3rd Qu.:110.35 3rd Qu.: 19.256
Max. :152.33 Max. : 27.897

A somewhat common transformation for a matrix is to transpose which changes rows to
columns. One might need to do this if an assay output from a lab machine puts samples
in rows and genes in columns, for example, while in Bioconductor/R, we often want the
samples in columns and the genes in rows.

t(m2)

97

8. Matrices

[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 76.265132 130.080007 68.14308 67.34310 152.32616 106.24387 56.58636
[2,] -5.879369 -9.188765 -18.58693 27.89672 20.71269 -35.60416 -13.89722

[,8] [,9] [,10]
[1,] 111.71414 102.8434 90.22191
[2,] 14.88633 -13.1163 22.98715

8.4. Calculations on matrix rows and columns

Again, we just need a matrix to play with. We’ll use rnorm again, but with a slight twist.

m3 = matrix(rnorm(100,5,2),ncol=10) # what does the 5 mean here? And the 2?

Since these data are from a normal distribution, we can look at a row (or column) to see
what the mean and standard deviation are.

mean(m3[,1])

[1] 5.434771

sd(m3[,1])

[1] 1.675129

or a row
mean(m3[1,])

[1] 6.147223

sd(m3[1,])

[1] 1.630307

There are some useful convenience functions for computing means and sums of data in all
of the columns and rows of matrices.

98

8. Matrices

colMeans(m3)

[1] 5.434771 5.177531 5.179380 4.965027 4.933516 4.238210 5.186793 3.976971
[9] 4.788226 4.295322

rowMeans(m3)

[1] 6.147223 3.438289 4.920728 5.254608 3.609042 5.730218 4.280746 4.563036
[9] 5.325723 4.906131

rowSums(m3)

[1] 61.47223 34.38289 49.20728 52.54608 36.09042 57.30218 42.80746 45.63036
[9] 53.25723 49.06131

colSums(m3)

[1] 54.34771 51.77531 51.79380 49.65027 49.33516 42.38210 51.86793 39.76971
[9] 47.88226 42.95322

We can look at the distribution of column means:

save as a variable
cmeans = colMeans(m3)
summary(cmeans)

Min. 1st Qu. Median Mean 3rd Qu. Max.
3.977 4.419 4.949 4.818 5.179 5.435

Note that this is centered pretty closely around the selected mean of 5 above.

How about the standard deviation? There is not a colSd function, but it turns out that
we can easily apply functions that take vectors as input, like sd and “apply” them across
either the rows (the first dimension) or columns (the second) dimension.

99

8. Matrices

csds = apply(m3, 2, sd)
summary(csds)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.054 1.677 1.791 1.811 1.953 2.420

Again, take a look at the distribution which is centered quite close to the selected standard
deviation when we created our matrix.

8.5. Exercises

8.5.1. Data preparation

For this set of exercises, we are going to rely on a dataset that comes with R. It gives the
number of sunspots per month from 1749-1983. The dataset comes as a ts or time series
data type which I convert to a matrix using the following code.

Just run the code as is and focus on the rest of the exercises.

data(sunspots)
sunspot_mat <- matrix(as.vector(sunspots),ncol=12,byrow = TRUE)
colnames(sunspot_mat) <- as.character(1:12)
rownames(sunspot_mat) <- as.character(1749:1983)

8.5.2. Questions

• After the conversion above, what does sunspot_mat look like? Use functions to find
the number of rows, the number of columns, the class, and some basic summary
statistics.
ncol(sunspot_mat)
nrow(sunspot_mat)
dim(sunspot_mat)
summary(sunspot_mat)
head(sunspot_mat)
tail(sunspot_mat)

• Practice subsetting the matrix a bit by selecting:

100

8. Matrices

– The first 10 years (rows)
– The month of July (7th column)
– The value for July, 1979 using the rowname to do the selection.

sunspot_mat[1:10,]
sunspot_mat[,7]
sunspot_mat['1979',7]

1. These next few exercises take advantage of the fact that calling a univariate statistical
function (one that expects a vector) works for matrices by just making a vector of
all the values in the matrix. What is the highest (max) number of sunspots recorded
in these data?
max(sunspot_mat)

2. And the minimum?
min(sunspot_mat)

3. And the overall mean and median?
mean(sunspot_mat)
median(sunspot_mat)

4. Use the hist() function to look at the distribution of all the monthly sunspot data.
hist(sunspot_mat)

5. Read about the breaks argument to hist() to try to increase the number of breaks
in the histogram to increase the resolution slightly. Adjust your hist() and breaks
to your liking.
hist(sunspot_mat, breaks=40)

6. Now, let’s move on to summarizing the data a bit to learn about the pattern of
sunspots varies by month or by year. Examine the dataset again. What do the
columns represent? And the rows?
just a quick glimpse of the data will give us a sense
head(sunspot_mat)

7. We’d like to look at the distribution of sunspots by month. How can we do that?
the mean of the columns is the mean number of sunspots per month.
colMeans(sunspot_mat)

101

8. Matrices

Another way to write the same thing:
apply(sunspot_mat, 2, mean)

8. Assign the month summary above to a variable and summarize it to get a sense of
the spread over months.
monthmeans = colMeans(sunspot_mat)
summary(monthmeans)

9. Play the same game for years to get the per-year mean?
ymeans = rowMeans(sunspot_mat)
summary(ymeans)

10. Make a plot of the yearly means. Do you see a pattern?
plot(ymeans)
or make it clearer
plot(ymeans, type='l')

102

9. Data Frames

While R has many different data types, the one that is central to much of the power and
popularity of R is the data.frame. A data.frame looks a bit like an R matrix in that it
has two dimensions, rows and columns. However, data.frames are usually viewed as a set
of columns representing variables and the rows representing the values of those variables.
Importantly, a data.frame may contain different data types in each of its columns; matrices
must contain only one data type. This distinction is important to remember, as there are
specific approaches to working with R data.frames that may be different than those for
working with matrices.

9.1. Learning goals

• Understand how data.frames are different from matrices.
• Know a few functions for examing the contents of a data.frame.
• List approaches for subsetting data.frames.
• Be able to load and save tabular data from and to disk.
• Show how to create a data.frames from scratch.

9.2. Learning objectives

• Load the yeast growth dataset into R using read.csv.
• Examine the contents of the dataset.
• Use subsetting to find genes that may be involved with nutrient metabolism and

transport.
• Summarize data measurements by categories.

9.3. Dataset

The data used here are borrowed directly from the fantastic Bioconnector tutorials and
are a cleaned up version of the data from Brauer et al. Coordination of Growth Rate, Cell

103

http://bioconnector.org/index.html
http://www.ncbi.nlm.nih.gov/pubmed/17959824
http://www.ncbi.nlm.nih.gov/pubmed/17959824

9. Data Frames

Cycle, Stress Response, and Metabolic Activity in Yeast (2008) Mol Biol Cell 19:352-367.
These data are from a gene expression microarray, and in this paper the authors examine
the relationship between growth rate and gene expression in yeast cultures limited by one of
six different nutrients (glucose, leucine, ammonium, sulfate, phosphate, uracil). If you give
yeast a rich media loaded with nutrients except restrict the supply of a single nutrient, you
can control the growth rate to any rate you choose. By starving yeast of specific nutrients
you can find genes that:

1. Raise or lower their expression in response to growth rate. Growth-rate dependent
expression patterns can tell us a lot about cell cycle control, and how the cell responds
to stress. The authors found that expression of >25% of all yeast genes is linearly
correlated with growth rate, independent of the limiting nutrient. They also found
that the subset of negatively growth-correlated genes is enriched for peroxisomal
functions, and positively correlated genes mainly encode ribosomal functions.

2. Respond differently when different nutrients are being limited. If you see particular
genes that respond very differently when a nutrient is sharply restricted, these genes
might be involved in the transport or metabolism of that specific nutrient.

The dataset can be downloaded directly from:

• brauer2007_tidy.csv

We are going to read this dataset into R and then use it as a playground for learning about
data.frames.

9.4. Reading in data

R has many capabilities for reading in data. Many of the functions have names that help
us to understand what data format is to be expected. In this case, the filename that we
want to read ends in .csv, meaning comma-separated-values. The read.csv() function
reads in .csv files. As usual, it is worth reading help('read.csv') to get a better sense
of the possible bells-and-whistles.

The read.csv() function can read directly from a URL, so we do not need to download
the file directly. This dataset is relatively large (about 16MB), so this may take a bit
depending on your network connection speed.

options(width=60)

104

http://www.ncbi.nlm.nih.gov/pubmed/17959824
http://www.ncbi.nlm.nih.gov/pubmed/17959824
https://raw.githubusercontent.com/bioconnector/workshops/master/data/brauer2007_tidy.csv

9. Data Frames

url = paste0(
'https://raw.githubusercontent.com',
'/bioconnector/workshops/master/data/brauer2007_tidy.csv'

)
ydat <- read.csv(url)

Our variable, ydat, now “contains” the downloaded and read data. We can check to see
what data type read.csv gave us:

class(ydat)

[1] "data.frame"

9.5. Inspecting data.frames

Our ydat variable is a data.frame. As I mentioned, the dataset is fairly large, so we will
not be able to look at it all at once on the screen. However, R gives us many tools to
inspect a data.frame.

• Overviews of content

– head() to show first few rows
– tail() to show last few rows

• Size

– dim() for dimensions (rows, columns)
– nrow()
– ncol()
– object.size() for power users interested in the memory used to store an object

• Data and attribute summaries

– colnames() to get the names of the columns
– rownames() to get the “names” of the rows–may not be present
– summary() to get per-column summaries of the data in the data.frame.

head(ydat)

105

9. Data Frames

symbol systematic_name nutrient rate expression
1 SFB2 YNL049C Glucose 0.05 -0.24
2 <NA> YNL095C Glucose 0.05 0.28
3 QRI7 YDL104C Glucose 0.05 -0.02
4 CFT2 YLR115W Glucose 0.05 -0.33
5 SSO2 YMR183C Glucose 0.05 0.05
6 PSP2 YML017W Glucose 0.05 -0.69

bp
1 ER to Golgi transport
2 biological process unknown
3 proteolysis and peptidolysis
4 mRNA polyadenylylation*
5 vesicle fusion*
6 biological process unknown

mf
1 molecular function unknown
2 molecular function unknown
3 metalloendopeptidase activity
4 RNA binding
5 t-SNARE activity
6 molecular function unknown

tail(ydat)

symbol systematic_name nutrient rate expression
198425 DOA1 YKL213C Uracil 0.3 0.14
198426 KRE1 YNL322C Uracil 0.3 0.28
198427 MTL1 YGR023W Uracil 0.3 0.27
198428 KRE9 YJL174W Uracil 0.3 0.43
198429 UTH1 YKR042W Uracil 0.3 0.19
198430 <NA> YOL111C Uracil 0.3 0.04

bp
198425 ubiquitin-dependent protein catabolism*
198426 cell wall organization and biogenesis
198427 cell wall organization and biogenesis
198428 cell wall organization and biogenesis*
198429 mitochondrion organization and biogenesis*
198430 biological process unknown

mf
198425 molecular function unknown

106

9. Data Frames

198426 structural constituent of cell wall
198427 molecular function unknown
198428 molecular function unknown
198429 molecular function unknown
198430 molecular function unknown

dim(ydat)

[1] 198430 7

nrow(ydat)

[1] 198430

ncol(ydat)

[1] 7

colnames(ydat)

[1] "symbol" "systematic_name" "nutrient"
[4] "rate" "expression" "bp"
[7] "mf"

summary(ydat)

symbol systematic_name nutrient
Length:198430 Length:198430 Length:198430
Class :character Class :character Class :character
Mode :character Mode :character Mode :character

rate expression bp
Min. :0.0500 Min. :-6.500000 Length:198430
1st Qu.:0.1000 1st Qu.:-0.290000 Class :character

107

9. Data Frames

Median :0.2000 Median : 0.000000 Mode :character
Mean :0.1752 Mean : 0.003367
3rd Qu.:0.2500 3rd Qu.: 0.290000
Max. :0.3000 Max. : 6.640000

mf
Length:198430
Class :character
Mode :character

In RStudio, there is an additional function, View() (note the capital “V”) that opens the
first 1000 rows (default) in the RStudio window, akin to a spreadsheet view.

View(ydat)

9.6. Accessing variables (columns) and subsetting

In R, data.frames can be subset similarly to other two-dimensional data structures. The
[in R is used to denote subsetting of any kind. When working with two-dimensional
data, we need two values inside the [] to specify the details. The specification is [rows,
columns]. For example, to get the first three rows of ydat, use:

ydat[1:3,]

symbol systematic_name nutrient rate expression
1 SFB2 YNL049C Glucose 0.05 -0.24
2 <NA> YNL095C Glucose 0.05 0.28
3 QRI7 YDL104C Glucose 0.05 -0.02

bp
1 ER to Golgi transport
2 biological process unknown
3 proteolysis and peptidolysis

mf
1 molecular function unknown
2 molecular function unknown
3 metalloendopeptidase activity

108

9. Data Frames

Note how the second number, the columns, is blank. R takes that to mean “all the columns”.
Similarly, we can combine rows and columns specification arbitrarily.

ydat[1:3, 1:3]

symbol systematic_name nutrient
1 SFB2 YNL049C Glucose
2 <NA> YNL095C Glucose
3 QRI7 YDL104C Glucose

Because selecting a single variable, or column, is such a common operation, there are two
shortcuts for doing so with data.frames. The first, the $ operator works like so:

Look at the column names, just to refresh memory
colnames(ydat)

[1] "symbol" "systematic_name" "nutrient"
[4] "rate" "expression" "bp"
[7] "mf"

Note that I am using "head" here to limit the output
head(ydat$symbol)

[1] "SFB2" NA "QRI7" "CFT2" "SSO2" "PSP2"

What is the actual length of "symbol"?
length(ydat$symbol)

[1] 198430

The second is related to the fact that, in R, data.frames are also lists. We subset a list by
using [[]] notation. To get the second column of ydat, we can use:

head(ydat[[2]])

[1] "YNL049C" "YNL095C" "YDL104C" "YLR115W" "YMR183C"
[6] "YML017W"

109

9. Data Frames

Alternatively, we can use the column name:

head(ydat[["systematic_name"]])

[1] "YNL049C" "YNL095C" "YDL104C" "YLR115W" "YMR183C"
[6] "YML017W"

9.6.1. Some data exploration

There are a couple of columns that include numeric values. Which columns are numeric?

class(ydat$symbol)

[1] "character"

class(ydat$rate)

[1] "numeric"

class(ydat$expression)

[1] "numeric"

Make histograms of: - the expression values - the rate values

What does the table() function do? Could you use that to look a the rate column given
that that column appears to have repeated values?

What rate corresponds to the most nutrient-starved condition?

110

9. Data Frames

9.6.2. More advanced indexing and subsetting

We can use, for example, logical values (TRUE/FALSE) to subset data.frames.

head(ydat[ydat$symbol == 'LEU1',])

symbol systematic_name nutrient rate expression bp
NA <NA> <NA> <NA> NA NA <NA>
NA.1 <NA> <NA> <NA> NA NA <NA>
NA.2 <NA> <NA> <NA> NA NA <NA>
NA.3 <NA> <NA> <NA> NA NA <NA>
NA.4 <NA> <NA> <NA> NA NA <NA>
NA.5 <NA> <NA> <NA> NA NA <NA>

mf
NA <NA>
NA.1 <NA>
NA.2 <NA>
NA.3 <NA>
NA.4 <NA>
NA.5 <NA>

tail(ydat[ydat$symbol == 'LEU1',])

symbol systematic_name nutrient rate expression
NA.47244 <NA> <NA> <NA> NA NA
NA.47245 <NA> <NA> <NA> NA NA
NA.47246 <NA> <NA> <NA> NA NA
NA.47247 <NA> <NA> <NA> NA NA
NA.47248 <NA> <NA> <NA> NA NA
NA.47249 <NA> <NA> <NA> NA NA

bp mf
NA.47244 <NA> <NA>
NA.47245 <NA> <NA>
NA.47246 <NA> <NA>
NA.47247 <NA> <NA>
NA.47248 <NA> <NA>
NA.47249 <NA> <NA>

What is the problem with this approach? It appears that there are a bunch of NA values.
Taking a quick look at the symbol column, we see what the problem.

111

9. Data Frames

summary(ydat$symbol)

Length Class Mode
198430 character character

Using the is.na() function, we can make filter further to get down to values of interest.

head(ydat[ydat$symbol == 'LEU1' & !is.na(ydat$symbol),])

symbol systematic_name nutrient rate expression
1526 LEU1 YGL009C Glucose 0.05 -1.12
7043 LEU1 YGL009C Glucose 0.10 -0.77
12555 LEU1 YGL009C Glucose 0.15 -0.67
18071 LEU1 YGL009C Glucose 0.20 -0.59
23603 LEU1 YGL009C Glucose 0.25 -0.20
29136 LEU1 YGL009C Glucose 0.30 0.03

bp
1526 leucine biosynthesis
7043 leucine biosynthesis
12555 leucine biosynthesis
18071 leucine biosynthesis
23603 leucine biosynthesis
29136 leucine biosynthesis

mf
1526 3-isopropylmalate dehydratase activity
7043 3-isopropylmalate dehydratase activity
12555 3-isopropylmalate dehydratase activity
18071 3-isopropylmalate dehydratase activity
23603 3-isopropylmalate dehydratase activity
29136 3-isopropylmalate dehydratase activity

Sometimes, looking at the data themselves is not that important. Using dim() is one
possibility to look at the number of rows and columns after subsetting.

dim(ydat[ydat$expression > 3,])

[1] 714 7

112

9. Data Frames

Find the high expressed genes when leucine-starved. For this task we can also use subset
which allows us to treat column names as R variables (no $ needed).

subset(ydat, nutrient == 'Leucine' & rate == 0.05 & expression > 3)

symbol systematic_name nutrient rate expression
133768 QDR2 YIL121W Leucine 0.05 4.61
133772 LEU1 YGL009C Leucine 0.05 3.84
133858 BAP3 YDR046C Leucine 0.05 4.29
135186 <NA> YPL033C Leucine 0.05 3.43
135187 <NA> YLR267W Leucine 0.05 3.23
135288 HXT3 YDR345C Leucine 0.05 5.16
135963 TPO2 YGR138C Leucine 0.05 3.75
135965 YRO2 YBR054W Leucine 0.05 4.40
136102 GPG1 YGL121C Leucine 0.05 3.08
136109 HSP42 YDR171W Leucine 0.05 3.07
136119 HXT5 YHR096C Leucine 0.05 4.90
136151 <NA> YJL144W Leucine 0.05 3.06
136152 MOH1 YBL049W Leucine 0.05 3.43
136153 <NA> YBL048W Leucine 0.05 3.95
136189 HSP26 YBR072W Leucine 0.05 4.86
136231 NCA3 YJL116C Leucine 0.05 4.03
136233 <NA> YBR116C Leucine 0.05 3.28
136486 <NA> YGR043C Leucine 0.05 3.07
137443 ADH2 YMR303C Leucine 0.05 4.15
137448 ICL1 YER065C Leucine 0.05 3.54
137451 SFC1 YJR095W Leucine 0.05 3.72
137569 MLS1 YNL117W Leucine 0.05 3.76

bp
133768 multidrug transport
133772 leucine biosynthesis
133858 amino acid transport
135186 meiosis*
135187 biological process unknown
135288 hexose transport
135963 polyamine transport
135965 biological process unknown
136102 signal transduction
136109 response to stress*
136119 hexose transport

113

9. Data Frames

136151 response to dessication
136152 biological process unknown
136153 <NA>
136189 response to stress*
136231 mitochondrion organization and biogenesis
136233 <NA>
136486 biological process unknown
137443 fermentation*
137448 glyoxylate cycle
137451 fumarate transport*
137569 glyoxylate cycle

mf
133768 multidrug efflux pump activity
133772 3-isopropylmalate dehydratase activity
133858 amino acid transporter activity
135186 molecular function unknown
135187 molecular function unknown
135288 glucose transporter activity*
135963 spermine transporter activity
135965 molecular function unknown
136102 signal transducer activity
136109 unfolded protein binding
136119 glucose transporter activity*
136151 molecular function unknown
136152 molecular function unknown
136153 <NA>
136189 unfolded protein binding
136231 molecular function unknown
136233 <NA>
136486 transaldolase activity
137443 alcohol dehydrogenase activity
137448 isocitrate lyase activity
137451 succinate:fumarate antiporter activity
137569 malate synthase activity

9.7. Aggregating data

Aggregating data, or summarizing by category, is a common way to look for trends or dif-
ferences in measurements between categories. Use aggregate to find the mean expression

114

9. Data Frames

by gene symbol.

head(aggregate(ydat$expression, by=list(ydat$symbol), mean))

Group.1 x
1 AAC1 0.52888889
2 AAC3 -0.21628571
3 AAD10 0.43833333
4 AAD14 -0.07166667
5 AAD16 0.24194444
6 AAD4 -0.79166667

or
head(aggregate(expression ~ symbol, mean, data=ydat))

symbol expression
1 AAC1 0.52888889
2 AAC3 -0.21628571
3 AAD10 0.43833333
4 AAD14 -0.07166667
5 AAD16 0.24194444
6 AAD4 -0.79166667

9.8. Creating a data.frame from scratch

Sometimes it is useful to combine related data into one object. For example, let’s simulate
some data.

smoker = factor(rep(c("smoker", "non-smoker"), each=50))
smoker_numeric = as.numeric(smoker)
x = rnorm(100)
risk = x + 2*smoker_numeric

We have two varibles, risk and smoker that are related. We can make a data.frame out
of them:

115

9. Data Frames

smoker_risk = data.frame(smoker = smoker, risk = risk)
head(smoker_risk)

smoker risk
1 smoker 4.047227
2 smoker 3.710827
3 smoker 3.100671
4 smoker 4.497024
5 smoker 2.723650
6 smoker 2.860481

R also has plotting shortcuts that work with data.frames to simplify plotting

plot(risk ~ smoker, data=smoker_risk)

non−smoker smoker

1
2

3
4

5
6

smoker

ris
k

9.9. Saving a data.frame

Once we have a data.frame of interest, we may want to save it. The most portable way to
save a data.frame is to use one of the write functions. In this case, let’s save the data as
a .csv file.

write.csv(smoker_risk, "smoker_risk.csv")

116

10. Factors

10.1. Factors

A factor is a special type of vector, normally used to hold a categorical variable–such as
smoker/nonsmoker, state of residency, zipcode–in many statistical functions. Such vectors
have class “factor”. Factors are primarily used in Analysis of Variance (ANOVA) or other
situations when “categories” are needed. When a factor is used as a predictor variable, the
corresponding indicator variables are created (more later).

Note of caution that factors in R often appear to be character vectors when printed, but
you will notice that they do not have double quotes around them. They are stored in R
as numbers with a key name, so sometimes you will note that the factor behaves like a
numeric vector.

create the character vector
citizen<-c("uk","us","no","au","uk","us","us","no","au")

convert to factor
citizenf<-factor(citizen)
citizen

[1] "uk" "us" "no" "au" "uk" "us" "us" "no" "au"

citizenf

[1] uk us no au uk us us no au
Levels: au no uk us

convert factor back to character vector
as.character(citizenf)

[1] "uk" "us" "no" "au" "uk" "us" "us" "no" "au"

117

10. Factors

convert to numeric vector
as.numeric(citizenf)

[1] 3 4 2 1 3 4 4 2 1

R stores many data structures as vectors with “attributes” and “class” (just so you have
seen this).

attributes(citizenf)

$levels
[1] "au" "no" "uk" "us"

$class
[1] "factor"

class(citizenf)

[1] "factor"

note that after unclassing, we can see the
underlying numeric structure again
unclass(citizenf)

[1] 3 4 2 1 3 4 4 2 1
attr(,"levels")
[1] "au" "no" "uk" "us"

Tabulating factors is a useful way to get a sense of the “sample” set available.

table(citizenf)

citizenf
au no uk us
2 2 2 3

118

Part III.

Exploratory data analysis

119

Imagine you’re on an adventure, about to embark on a journey into the unknown. You’ve
just been handed a treasure map, with the promise of valuable insights waiting to be dis-
covered. This map is your data set, and the journey is exploratory data analysis (EDA).

As you begin your exploration, you start by getting a feel for the terrain. You take a broad,
bird’s-eye view of the data, examining its structure and dimensions. Are you dealing with
a vast landscape or a small, confined area? Are there any missing pieces in the map that
you’ll need to account for? Understanding the overall context of your data set is crucial
before venturing further.

With a sense of the landscape, you now zoom in to identify key landmarks in the data.
You might look for unusual patterns, trends, or relationships between variables. As you
spot these landmarks, you start asking questions: What’s causing that spike in values?
Are these two factors related, or is it just a coincidence? By asking these questions, you’re
actively engaging with the data and forming hypotheses that could guide future analysis
or experiments.

As you continue your journey, you realize that the map alone isn’t enough to fully under-
stand the terrain. You need more tools to bring the data to life. You start visualizing the
data using charts, plots, and graphs. These visualizations act as your binoculars, allowing
you to see patterns and relationships more clearly. Through them, you can uncover the
hidden treasures buried within the data.

EDA isn’t a linear path from start to finish. As you explore, you’ll find yourself circling
back to previous points, refining your questions, and digging deeper. The process is iter-
ative, with each new discovery informing the next. And as you go, you’ll gain a deeper
understanding of the data’s underlying structure and potential.

Finally, after your thorough exploration, you’ll have a solid foundation to build upon. You’ll
be better equipped to make informed decisions, test hypotheses, and draw meaningful
conclusions. The insights you’ve gained through EDA will serve as a compass, guiding
you towards the true value hidden within your data. And with that, you’ve successfully
completed your journey through exploratory data analysis.

120

11. Introduction to dplyr: mammal sleep
dataset

The dataset we will be using to introduce the dplyr package is an updated and expanded
version of the mammals sleep dataset. Updated sleep times and weights were taken from
V. M. Savage and G. B. West. A quantitative, theoretical framework for understanding
mammalian sleep1.

11.1. Learning goals

• Know that dplyr is just a different approach to manipulating data in data.frames.
• List the commonly used dplyr verbs and how they can be used to manipulate

data.frames.
• Show how to aggregate and summarized data using dplyr
• Know what the piping operator, |>, is and how it can be used.

11.2. Learning objectives

• Select subsets of the mammal sleep dataset.
• Reorder the dataset.
• Add columns to the dataset based on existing columns.
• Summarize the amount of sleep by categorical variables using group_by and

summarize.

1A quantitative, theoretical framework for understanding mammalian sleep. Van M. Savage, Geof-
frey B. West. Proceedings of the National Academy of Sciences Jan 2007, 104 (3) 1051-1056; DOI:
10.1073/pnas.0610080104

121

https://doi.org/10.1073/pnas.0610080104

11. Introduction to dplyr: mammal sleep dataset

11.3. What is dplyr?

The dplyr package is a specialized package for working with data.frames (and the related
tibble) to transform and summarize tabular data with rows and columns. For another
explanation of dplyr see the dplyr package vignette: Introduction to dplyr

11.4. Why Is dplyr userful?

dplyr contains a set of functions–commonly called the dplyr “verbs”–that perform common
data manipulations such as filtering for rows, selecting specific columns, re-ordering rows,
adding new columns and summarizing data. In addition, dplyr contains a useful function
to perform another common task which is the “split-apply-combine” concept.

Compared to base functions in R, the functions in dplyr are often easier to work with,
are more consistent in the syntax and are targeted for data analysis around data frames,
instead of just vectors.

11.5. Data: Mammals Sleep

The msleep (mammals sleep) data set contains the sleep times and weights for a set of
mammals and is available in the dagdata repository on github. This data set contains 83
rows and 11 variables. The data happen to be available as a dataset in the ggplot2 package.
To get access to the msleep dataset, we need to first install the ggplot2 package.

install.packages('ggplot2')

Then, we can load the library.

library(ggplot2)
data(msleep)

As with many datasets in R, “help” is available to describe the dataset itself.

?msleep

122

http://cran.rstudio.com/web/packages/dplyr/vignettes/introduction.html

11. Introduction to dplyr: mammal sleep dataset

The columns are described in the help page, but are included here, also.

column name Description
name common name
genus taxonomic rank
vore carnivore, omnivore or herbivore?
order taxonomic rank
conservation the conservation status of the mammal
sleep_total total amount of sleep, in hours
sleep_rem rem sleep, in hours
sleep_cycle length of sleep cycle, in hours
awake amount of time spent awake, in hours
brainwt brain weight in kilograms
bodywt body weight in kilograms

11.6. dplyr verbs

The dplyr verbs are listed here. There are many other functions available in dplyr, but we
will focus on just these.

dplyr verbs Description
select() select columns
filter() filter rows
arrange() re-order or arrange rows
mutate() create new columns
summarise() summarise values
group_by() allows for group operations in the

“split-apply-combine” concept

11.7. Using the dplyr verbs

The two most basic functions are select() and filter(), which selects columns and filters
rows respectively. What are the equivalent ways to select columns without dplyr? And
filtering to include only specific rows?

Before proceeding, we need to install the dplyr package:

123

11. Introduction to dplyr: mammal sleep dataset

install.packages('dplyr')

And then load the library:

library(dplyr)

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

filter, lag

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union

11.7.1. Selecting columns: select()

Select a set of columns such as the name and the sleep_total columns.

sleepData <- select(msleep, name, sleep_total)
head(sleepData)

A tibble: 6 x 2
name sleep_total
<chr> <dbl>

1 Cheetah 12.1
2 Owl monkey 17
3 Mountain beaver 14.4
4 Greater short-tailed shrew 14.9
5 Cow 4
6 Three-toed sloth 14.4

To select all the columns except a specific column, use the “-” (subtraction) operator (also
known as negative indexing). For example, to select all columns except name:

124

11. Introduction to dplyr: mammal sleep dataset

head(select(msleep, -name))

A tibble: 6 x 10
genus vore order conservation sleep_total sleep_rem sleep_cycle awake
<chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>

1 Acinonyx carni Carnivo~ lc 12.1 NA NA 11.9
2 Aotus omni Primates <NA> 17 1.8 NA 7
3 Aplodontia herbi Rodentia nt 14.4 2.4 NA 9.6
4 Blarina omni Soricom~ lc 14.9 2.3 0.133 9.1
5 Bos herbi Artioda~ domesticated 4 0.7 0.667 20
6 Bradypus herbi Pilosa <NA> 14.4 2.2 0.767 9.6
i 2 more variables: brainwt <dbl>, bodywt <dbl>

To select a range of columns by name, use the “:” operator. Note that dplyr allows us to
use the column names without quotes and as “indices” of the columns.

head(select(msleep, name:order))

A tibble: 6 x 4
name genus vore order
<chr> <chr> <chr> <chr>

1 Cheetah Acinonyx carni Carnivora
2 Owl monkey Aotus omni Primates
3 Mountain beaver Aplodontia herbi Rodentia
4 Greater short-tailed shrew Blarina omni Soricomorpha
5 Cow Bos herbi Artiodactyla
6 Three-toed sloth Bradypus herbi Pilosa

To select all columns that start with the character string “sl”, use the function starts_-
with().

head(select(msleep, starts_with("sl")))

A tibble: 6 x 3
sleep_total sleep_rem sleep_cycle

<dbl> <dbl> <dbl>
1 12.1 NA NA
2 17 1.8 NA

125

11. Introduction to dplyr: mammal sleep dataset

3 14.4 2.4 NA
4 14.9 2.3 0.133
5 4 0.7 0.667
6 14.4 2.2 0.767

Some additional options to select columns based on a specific criteria include:

1. ends_with() = Select columns that end with a character string
2. contains() = Select columns that contain a character string
3. matches() = Select columns that match a regular expression
4. one_of() = Select column names that are from a group of names

11.7.2. Selecting rows: filter()

The filter() function allows us to filter rows to include only those rows that match the
filter. For example, we can filter the rows for mammals that sleep a total of more than 16
hours.

filter(msleep, sleep_total >= 16)

A tibble: 8 x 11
name genus vore order conservation sleep_total sleep_rem sleep_cycle awake
<chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>

1 Owl mo~ Aotus omni Prim~ <NA> 17 1.8 NA 7
2 Long-n~ Dasy~ carni Cing~ lc 17.4 3.1 0.383 6.6
3 North ~ Dide~ omni Dide~ lc 18 4.9 0.333 6
4 Big br~ Epte~ inse~ Chir~ lc 19.7 3.9 0.117 4.3
5 Thick-~ Lutr~ carni Dide~ lc 19.4 6.6 NA 4.6
6 Little~ Myot~ inse~ Chir~ <NA> 19.9 2 0.2 4.1
7 Giant ~ Prio~ inse~ Cing~ en 18.1 6.1 NA 5.9
8 Arctic~ Sper~ herbi Rode~ lc 16.6 NA NA 7.4
i 2 more variables: brainwt <dbl>, bodywt <dbl>

Filter the rows for mammals that sleep a total of more than 16 hours and have a body
weight of greater than 1 kilogram.

filter(msleep, sleep_total >= 16, bodywt >= 1)

126

11. Introduction to dplyr: mammal sleep dataset

A tibble: 3 x 11
name genus vore order conservation sleep_total sleep_rem sleep_cycle awake
<chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>

1 Long-n~ Dasy~ carni Cing~ lc 17.4 3.1 0.383 6.6
2 North ~ Dide~ omni Dide~ lc 18 4.9 0.333 6
3 Giant ~ Prio~ inse~ Cing~ en 18.1 6.1 NA 5.9
i 2 more variables: brainwt <dbl>, bodywt <dbl>

Filter the rows for mammals in the Perissodactyla and Primates taxonomic order. The
%in% operator is a logical operator that returns TRUE for values of a vector that are present
in a second vector.

filter(msleep, order %in% c("Perissodactyla", "Primates"))

A tibble: 15 x 11
name genus vore order conservation sleep_total sleep_rem sleep_cycle awake
<chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>

1 Owl m~ Aotus omni Prim~ <NA> 17 1.8 NA 7
2 Grivet Cerc~ omni Prim~ lc 10 0.7 NA 14
3 Horse Equus herbi Peri~ domesticated 2.9 0.6 1 21.1
4 Donkey Equus herbi Peri~ domesticated 3.1 0.4 NA 20.9
5 Patas~ Eryt~ omni Prim~ lc 10.9 1.1 NA 13.1
6 Galago Gala~ omni Prim~ <NA> 9.8 1.1 0.55 14.2
7 Human Homo omni Prim~ <NA> 8 1.9 1.5 16
8 Mongo~ Lemur herbi Prim~ vu 9.5 0.9 NA 14.5
9 Macaq~ Maca~ omni Prim~ <NA> 10.1 1.2 0.75 13.9
10 Slow ~ Nyct~ carni Prim~ <NA> 11 NA NA 13
11 Chimp~ Pan omni Prim~ <NA> 9.7 1.4 1.42 14.3
12 Baboon Papio omni Prim~ <NA> 9.4 1 0.667 14.6
13 Potto Pero~ omni Prim~ lc 11 NA NA 13
14 Squir~ Saim~ omni Prim~ <NA> 9.6 1.4 NA 14.4
15 Brazi~ Tapi~ herbi Peri~ vu 4.4 1 0.9 19.6
i 2 more variables: brainwt <dbl>, bodywt <dbl>

You can use the boolean operators (e.g. >, <, >=, <=, !=, %in%) to create the logical
tests.

127

11. Introduction to dplyr: mammal sleep dataset

11.8. “Piping” ” with |>

It is not unusual to want to perform a set of operations using dplyr. The pipe operator |>
allows us to “pipe” the output from one function into the input of the next. While there
is nothing special about how R treats operations that are written in a pipe, the idea of
piping is to allow us to read multiple functions operating one after another from left-to-
right. Without piping, one would either 1) save each step in set of functions as a temporary
variable and then pass that variable along the chain or 2) have to “nest” functions, which
can be hard to read.

Here’s an example we have already used:

head(select(msleep, name, sleep_total))

A tibble: 6 x 2
name sleep_total
<chr> <dbl>

1 Cheetah 12.1
2 Owl monkey 17
3 Mountain beaver 14.4
4 Greater short-tailed shrew 14.9
5 Cow 4
6 Three-toed sloth 14.4

Now in this case, we will pipe the msleep data frame to the function that will select two
columns (name and sleep_total) and then pipe the new data frame to the function
head(), which will return the head of the new data frame.

msleep |>
select(name, sleep_total) |>
head()

A tibble: 6 x 2
name sleep_total
<chr> <dbl>

1 Cheetah 12.1
2 Owl monkey 17
3 Mountain beaver 14.4
4 Greater short-tailed shrew 14.9
5 Cow 4
6 Three-toed sloth 14.4

128

11. Introduction to dplyr: mammal sleep dataset

You will soon see how useful the pipe operator is when we start to combine many func-
tions.

Now that you know about the pipe operator (|>), we will use it throughout the rest of this
tutorial.

11.8.1. Arrange Or Re-order Rows Using arrange()

To arrange (or re-order) rows by a particular column, such as the taxonomic order, list the
name of the column you want to arrange the rows by:

msleep |> arrange(order) |> head()

A tibble: 6 x 11
name genus vore order conservation sleep_total sleep_rem sleep_cycle awake
<chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>

1 Tenrec Tenr~ omni Afro~ <NA> 15.6 2.3 NA 8.4
2 Cow Bos herbi Arti~ domesticated 4 0.7 0.667 20
3 Roe de~ Capr~ herbi Arti~ lc 3 NA NA 21
4 Goat Capri herbi Arti~ lc 5.3 0.6 NA 18.7
5 Giraffe Gira~ herbi Arti~ cd 1.9 0.4 NA 22.1
6 Sheep Ovis herbi Arti~ domesticated 3.8 0.6 NA 20.2
i 2 more variables: brainwt <dbl>, bodywt <dbl>

Now we will select three columns from msleep, arrange the rows by the taxonomic order
and then arrange the rows by sleep_total. Finally, show the head of the final data frame:

msleep |>
select(name, order, sleep_total) |>
arrange(order, sleep_total) |>
head()

A tibble: 6 x 3
name order sleep_total
<chr> <chr> <dbl>

1 Tenrec Afrosoricida 15.6
2 Giraffe Artiodactyla 1.9
3 Roe deer Artiodactyla 3
4 Sheep Artiodactyla 3.8

129

11. Introduction to dplyr: mammal sleep dataset

5 Cow Artiodactyla 4
6 Goat Artiodactyla 5.3

Same as above, except here we filter the rows for mammals that sleep for 16 or more hours,
instead of showing the head of the final data frame:

msleep |>
select(name, order, sleep_total) |>
arrange(order, sleep_total) |>
filter(sleep_total >= 16)

A tibble: 8 x 3
name order sleep_total
<chr> <chr> <dbl>

1 Big brown bat Chiroptera 19.7
2 Little brown bat Chiroptera 19.9
3 Long-nosed armadillo Cingulata 17.4
4 Giant armadillo Cingulata 18.1
5 North American Opossum Didelphimorphia 18
6 Thick-tailed opposum Didelphimorphia 19.4
7 Owl monkey Primates 17
8 Arctic ground squirrel Rodentia 16.6

For something slightly more complicated do the same as above, except arrange the rows in
the sleep_total column in a descending order. For this, use the function desc()

msleep |>
select(name, order, sleep_total) |>
arrange(order, desc(sleep_total)) |>
filter(sleep_total >= 16)

A tibble: 8 x 3
name order sleep_total
<chr> <chr> <dbl>

1 Little brown bat Chiroptera 19.9
2 Big brown bat Chiroptera 19.7
3 Giant armadillo Cingulata 18.1
4 Long-nosed armadillo Cingulata 17.4
5 Thick-tailed opposum Didelphimorphia 19.4

130

11. Introduction to dplyr: mammal sleep dataset

6 North American Opossum Didelphimorphia 18
7 Owl monkey Primates 17
8 Arctic ground squirrel Rodentia 16.6

11.9. Create New Columns Using mutate()

The mutate() function will add new columns to the data frame. Create a new column
called rem_proportion, which is the ratio of rem sleep to total amount of sleep.

msleep |>
mutate(rem_proportion = sleep_rem / sleep_total) |>
head()

A tibble: 6 x 12
name genus vore order conservation sleep_total sleep_rem sleep_cycle awake
<chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>

1 Cheetah Acin~ carni Carn~ lc 12.1 NA NA 11.9
2 Owl mo~ Aotus omni Prim~ <NA> 17 1.8 NA 7
3 Mounta~ Aplo~ herbi Rode~ nt 14.4 2.4 NA 9.6
4 Greate~ Blar~ omni Sori~ lc 14.9 2.3 0.133 9.1
5 Cow Bos herbi Arti~ domesticated 4 0.7 0.667 20
6 Three-~ Brad~ herbi Pilo~ <NA> 14.4 2.2 0.767 9.6
i 3 more variables: brainwt <dbl>, bodywt <dbl>, rem_proportion <dbl>

You can add many new columns using mutate (separated by commas). Here we add a
second column called bodywt_grams which is the bodywt column in grams.

msleep |>
mutate(rem_proportion = sleep_rem / sleep_total,

bodywt_grams = bodywt * 1000) |>
head()

A tibble: 6 x 13
name genus vore order conservation sleep_total sleep_rem sleep_cycle awake
<chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>

1 Cheetah Acin~ carni Carn~ lc 12.1 NA NA 11.9
2 Owl mo~ Aotus omni Prim~ <NA> 17 1.8 NA 7
3 Mounta~ Aplo~ herbi Rode~ nt 14.4 2.4 NA 9.6

131

11. Introduction to dplyr: mammal sleep dataset

4 Greate~ Blar~ omni Sori~ lc 14.9 2.3 0.133 9.1
5 Cow Bos herbi Arti~ domesticated 4 0.7 0.667 20
6 Three-~ Brad~ herbi Pilo~ <NA> 14.4 2.2 0.767 9.6
i 4 more variables: brainwt <dbl>, bodywt <dbl>, rem_proportion <dbl>,
bodywt_grams <dbl>

Is there a relationship between rem_proportion and bodywt? How about sleep_total?

11.9.1. Create summaries: summarise()

The summarise() function will create summary statistics for a given column in the data
frame such as finding the mean. For example, to compute the average number of hours of
sleep, apply the mean() function to the column sleep_total and call the summary value
avg_sleep.

msleep |>
summarise(avg_sleep = mean(sleep_total))

A tibble: 1 x 1
avg_sleep

<dbl>
1 10.4

There are many other summary statistics you could consider such sd(), min(), max(),
median(), sum(), n() (returns the length of vector), first() (returns first value in vector),
last() (returns last value in vector) and n_distinct() (number of distinct values in
vector).

msleep |>
summarise(avg_sleep = mean(sleep_total),

min_sleep = min(sleep_total),
max_sleep = max(sleep_total),
total = n())

A tibble: 1 x 4
avg_sleep min_sleep max_sleep total

<dbl> <dbl> <dbl> <int>
1 10.4 1.9 19.9 83

132

11. Introduction to dplyr: mammal sleep dataset

11.10. Grouping data: group_by()

The group_by() verb is an important function in dplyr. The group_by allows us to use
the concept of “split-apply-combine”. We literally want to split the data frame by some
variable (e.g. taxonomic order), apply a function to the individual data frames and then
combine the output. This approach is similar to the aggregate function from R, but
group_by integrates with dplyr.

Let’s do that: split the msleep data frame by the taxonomic order, then ask for the same
summary statistics as above. We expect a set of summary statistics for each taxonomic
order.

msleep |>
group_by(order) |>
summarise(avg_sleep = mean(sleep_total),

min_sleep = min(sleep_total),
max_sleep = max(sleep_total),
total = n())

A tibble: 19 x 5
order avg_sleep min_sleep max_sleep total
<chr> <dbl> <dbl> <dbl> <int>

1 Afrosoricida 15.6 15.6 15.6 1
2 Artiodactyla 4.52 1.9 9.1 6
3 Carnivora 10.1 3.5 15.8 12
4 Cetacea 4.5 2.7 5.6 3
5 Chiroptera 19.8 19.7 19.9 2
6 Cingulata 17.8 17.4 18.1 2
7 Didelphimorphia 18.7 18 19.4 2
8 Diprotodontia 12.4 11.1 13.7 2
9 Erinaceomorpha 10.2 10.1 10.3 2
10 Hyracoidea 5.67 5.3 6.3 3
11 Lagomorpha 8.4 8.4 8.4 1
12 Monotremata 8.6 8.6 8.6 1
13 Perissodactyla 3.47 2.9 4.4 3
14 Pilosa 14.4 14.4 14.4 1
15 Primates 10.5 8 17 12
16 Proboscidea 3.6 3.3 3.9 2
17 Rodentia 12.5 7 16.6 22
18 Scandentia 8.9 8.9 8.9 1
19 Soricomorpha 11.1 8.4 14.9 5

133

12. Case Study: Behavioral Risk Factor
Surveillance System

12.1. A Case Study on the Behavioral Risk Factor Surveillance
System

The Behavioral Risk Factor Surveillance System (BRFSS) is a large-scale health survey con-
ducted annually by the Centers for Disease Control and Prevention (CDC) in the United
States. The BRFSS collects information on various health-related behaviors, chronic health
conditions, and the use of preventive services among the adult population (18 years and
older) through telephone interviews. The main goal of the BRFSS is to identify and mon-
itor the prevalence of risk factors associated with chronic diseases, inform public health
policies, and evaluate the effectiveness of health promotion and disease prevention pro-
grams. The data collected through BRFSS is crucial for understanding the health status
and needs of the population, and it serves as a valuable resource for researchers, policy
makers, and healthcare professionals in making informed decisions and designing targeted
interventions.

In this chapter, we will walk through an exploratory data analysis (EDA) of the Behavioral
Risk Factor Surveillance System dataset using R. EDA is an important step in the data
analysis process, as it helps you to understand your data, identify trends, and detect any
anomalies before performing more advanced analyses. We will use various R functions and
packages to explore the dataset, with a focus on active learning and hands-on experience.

12.2. Loading the Dataset

First, let’s load the dataset into R. We will use the read.csv() function from the base R
package to read the data and store it in a data frame called brfss. Make sure the CSV file
is in your working directory, or provide the full path to the file.

First, we need to get the data. Either download the data from THIS LINK or have R do
it directly from the command-line (preferred):

134

data/BRFSS-subset.csv

12. Case Study: Behavioral Risk Factor Surveillance System

download.file('https://raw.githubusercontent.com/seandavi/ITR/master/BRFSS-subset.csv',
destfile = 'BRFSS-subset.csv')

path <- file.choose() # look for BRFSS-subset.csv

stopifnot(file.exists(path))
brfss <- read.csv(path)

12.3. Inspecting the Data

Once the data is loaded, let’s take a look at the first few rows of the dataset using the
head() function:

head(brfss)

Age Weight Sex Height Year
1 31 48.98798 Female 157.48 1990
2 57 81.64663 Female 157.48 1990
3 43 80.28585 Male 177.80 1990
4 72 70.30682 Male 170.18 1990
5 31 49.89516 Female 154.94 1990
6 58 54.43108 Female 154.94 1990

This will display the first six rows of the dataset, allowing you to get a feel for the data
structure and variable types.

Next, let’s check the dimensions of the dataset using the dim() function:

dim(brfss)

[1] 20000 5

This will return the number of rows and columns in the dataset, which is important to
know for subsequent analyses.

135

12. Case Study: Behavioral Risk Factor Surveillance System

12.4. Summary Statistics

Now that we have a basic understanding of the data structure, let’s calculate some summary
statistics. The summary() function in R provides a quick overview of the main statistics
for each variable in the dataset:

summary(brfss)

Age Weight Sex Height
Min. :18.00 Min. : 34.93 Length:20000 Min. :105.0
1st Qu.:36.00 1st Qu.: 61.69 Class :character 1st Qu.:162.6
Median :51.00 Median : 72.57 Mode :character Median :168.0
Mean :50.99 Mean : 75.42 Mean :169.2
3rd Qu.:65.00 3rd Qu.: 86.18 3rd Qu.:177.8
Max. :99.00 Max. :278.96 Max. :218.0
NA's :139 NA's :649 NA's :184

Year
Min. :1990
1st Qu.:1990
Median :2000
Mean :2000
3rd Qu.:2010
Max. :2010

This will display the minimum, first quartile, median, mean, third quartile, and maximum
for each numeric variable, and the frequency counts for each factor level for categorical
variables.

12.5. Data Visualization

Visualizing the data can help you identify patterns and trends in the dataset. Let’s start
by creating a histogram of the Age variable using the hist() function.

This will create a histogram showing the frequency distribution of ages in the dataset. You
can customize the appearance of the histogram by adjusting the parameters within the
hist() function.

136

12. Case Study: Behavioral Risk Factor Surveillance System

hist(brfss$Age, main = "Age Distribution",
xlab = "Age", col = "lightblue")

Age Distribution

Age

F
re

qu
en

cy

20 40 60 80 100

0
50

0
15

00

What are the options for a histogram?

The hist() function has many options. For example, you can change the number
of bins, the color of the bars, the title, and the x-axis label. You can also add a
vertical line at the mean or median, or add a normal curve to the histogram. For
more information, type ?hist in the R console.
More generally, it is important to understand the options available for each function
you use. You can do this by reading the documentation for the function, which can
be accessed by typing ?function_name or help("function_name")in the R console.

Next, let’s create a boxplot to compare the distribution of Weight between males and
females. We will use the boxplot() function for this. This will create a boxplot comparing
the weight distribution between males and females. You can customize the appearance of
the boxplot by adjusting the parameters within the boxplot() function.

boxplot(brfss$Weight ~ brfss$Sex, main = "Weight Distribution by Sex",
xlab = "Sex", ylab = "Weight", col = c("pink", "lightblue"))

137

12. Case Study: Behavioral Risk Factor Surveillance System

Female Male

50
15

0
25

0

Weight Distribution by Sex

Sex

W
ei

gh
t

12.6. Analyzing Relationships Between Variables

To further explore the data, let’s investigate the relationship between age and weight using
a scatterplot. We will use the plot() function for this:

This will create a scatterplot of age and weight, allowing you to visually assess the rela-
tionship between these two variables.

plot(brfss$Age, brfss$Weight, main = "Scatterplot of Age and Weight",
xlab = "Age", ylab = "Weight", col = "darkblue")

138

12. Case Study: Behavioral Risk Factor Surveillance System

20 40 60 80 100

50
15

0
25

0

Scatterplot of Age and Weight

Age

W
ei

gh
t

To quantify the strength of the relationship between age and weight, we can calculate the
correlation coefficient using the cor() function:

This will return the correlation coefficient between age and weight, which can help you
determine whether there is a linear relationship between these variables.

cor(brfss$Age, brfss$Weight)

[1] NA

Why does cor() give a value of NA? What can we do about it? A quick glance at
help("cor") will give you the answer.

cor(brfss$Age, brfss$Weight, use = "complete.obs")

[1] 0.02699989

12.7. Exercises

1. What is the mean weight in this dataset? How about the median? What is the
difference between the two? What does this tell you about the distribution of weights
in the dataset?

139

12. Case Study: Behavioral Risk Factor Surveillance System

mean(brfss$Weight, na.rm = TRUE)

[1] 75.42455

median(brfss$Weight, na.rm = TRUE)

[1] 72.57478

mean(brfss$Weight, na.rm=TRUE) - median(brfss$Weight, na.rm = TRUE)

[1] 2.849774

2. Given the findings about the mean and median in the previous exercise, use the hist()
function to create a histogram of the weight distribution in this dataset. How would
you describe the shape of this distribution?
hist(brfss$Weight, xlab="Weight (kg)", breaks = 30)

Histogram of brfss$Weight

Weight (kg)

F
re

qu
en

cy

50 100 150 200 250

0
20

00
40

00

3. Use plot() to examine the relationship between height and weight in this dataset.
plot(brfss$Height, brfss$Weight)

140

12. Case Study: Behavioral Risk Factor Surveillance System

120 140 160 180 200 220

50
15

0
25

0

brfss$Height

br
fs

s$
W

ei
gh

t

4. What is the correlation between height and weight? What does this tell you about
the relationship between these two variables?
cor(brfss$Height, brfss$Weight, use = "complete.obs")

[1] 0.5140928

5. Create a histogram of the height distribution in this dataset. How would you describe
the shape of this distribution?
hist(brfss$Height, xlab="Height (cm)", breaks = 30)

Histogram of brfss$Height

Height (cm)

F
re

qu
en

cy

120 140 160 180 200 220

0
10

00
30

00

141

12. Case Study: Behavioral Risk Factor Surveillance System

12.8. Conclusion

In this chapter, we have demonstrated how to perform an exploratory data analysis on
the Behavioral Risk Factor Surveillance System dataset using R. We covered data loading,
inspection, summary statistics, visualization, and the analysis of relationships between
variables. By actively engaging with the R code and data, you have gained valuable
experience in using R for EDA and are well-equipped to tackle more complex analyses in
your future work.

Remember that EDA is just the beginning of the data analysis process, and further statisti-
cal modeling and hypothesis testing will likely be necessary to draw meaningful conclusions
from your data. However, EDA is a crucial step in understanding your data and informing
your subsequent analyses.

12.9. Learn about the data

Using the data exploration techniques you have seen to explore the brfss dataset.

• summary()
• dim()
• colnames()
• head()
• tail()
• class()
• View()

You may want to investigate individual columns visually using plotting like hist(). For
categorical data, consider using something like table().

12.10. Clean data

R read Year as an integer value, but it’s really a factor

brfss$Year <- factor(brfss$Year)

142

12. Case Study: Behavioral Risk Factor Surveillance System

12.11. Weight in 1990 vs. 2010 Females

• Create a subset of the data

brfssFemale <- brfss[brfss$Sex == "Female",]
summary(brfssFemale)

Age Weight Sex Height
Min. :18.00 Min. : 36.29 Length:12039 Min. :105.0
1st Qu.:37.00 1st Qu.: 57.61 Class :character 1st Qu.:157.5
Median :52.00 Median : 65.77 Mode :character Median :163.0
Mean :51.92 Mean : 69.05 Mean :163.3
3rd Qu.:67.00 3rd Qu.: 77.11 3rd Qu.:168.0
Max. :99.00 Max. :272.16 Max. :200.7
NA's :103 NA's :560 NA's :140
Year

1990:5718
2010:6321

• Visualize

plot(Weight ~ Year, brfssFemale)

1990 2010

50
15

0
25

0

Year

W
ei

gh
t

143

12. Case Study: Behavioral Risk Factor Surveillance System

• Statistical test

t.test(Weight ~ Year, brfssFemale)

Welch Two Sample t-test

data: Weight by Year
t = -27.133, df = 11079, p-value < 2.2e-16
alternative hypothesis: true difference in means between group 1990 and group 2010 is not equal to 0
95 percent confidence interval:
-8.723607 -7.548102
sample estimates:
mean in group 1990 mean in group 2010

64.81838 72.95424

12.12. Weight and height in 2010 Males

• Create a subset of the data

brfss2010Male <- subset(brfss, Year == 2010 & Sex == "Male")
summary(brfss2010Male)

Age Weight Sex Height Year
Min. :18.00 Min. : 36.29 Length:3679 Min. :135 1990: 0
1st Qu.:45.00 1st Qu.: 77.11 Class :character 1st Qu.:173 2010:3679
Median :57.00 Median : 86.18 Mode :character Median :178
Mean :56.25 Mean : 88.85 Mean :178
3rd Qu.:68.00 3rd Qu.: 99.79 3rd Qu.:183
Max. :99.00 Max. :278.96 Max. :218
NA's :30 NA's :49 NA's :31

• Visualize the relationship

hist(brfss2010Male$Weight)

144

12. Case Study: Behavioral Risk Factor Surveillance System

Histogram of brfss2010Male$Weight

brfss2010Male$Weight

F
re

qu
en

cy

50 100 150 200 250

0
50

0
10

00

hist(brfss2010Male$Height)

Histogram of brfss2010Male$Height

brfss2010Male$Height

F
re

qu
en

cy

140 160 180 200 220

0
40

0
80

0

plot(Weight ~ Height, brfss2010Male)

145

12. Case Study: Behavioral Risk Factor Surveillance System

140 160 180 200 220

50
15

0
25

0

Height

W
ei

gh
t

• Fit a linear model (regression)

fit <- lm(Weight ~ Height, brfss2010Male)
fit

Call:
lm(formula = Weight ~ Height, data = brfss2010Male)

Coefficients:
(Intercept) Height

-86.8747 0.9873

Summarize as ANOVA table

anova(fit)

Analysis of Variance Table

Response: Weight
Df Sum Sq Mean Sq F value Pr(>F)

Height 1 197664 197664 693.8 < 2.2e-16 ***
Residuals 3617 1030484 285

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

146

12. Case Study: Behavioral Risk Factor Surveillance System

• Plot points, superpose fitted regression line; where am I?

plot(Weight ~ Height, brfss2010Male)
abline(fit, col="blue", lwd=2)
Substitute your own weight and height...
points(73 * 2.54, 178 / 2.2, col="red", cex=4, pch=20)

140 160 180 200 220

50
15

0
25

0

Height

W
ei

gh
t

• Class and available ‘methods’

class(fit) # 'noun'
methods(class=class(fit)) # 'verb'

• Diagnostics

plot(fit)
Note that the "plot" above does not have a ".lm"
However, R will use "plot.lm". Why?
?plot.lm

147

Part IV.

statististics

148

13. Working with distribution functions

Which values do pnorm, dnorm, qnorm, and rnorm return? How do I remember the
difference between these?

I find it helpful to have visual representations of distributions as pictures. It is difficult
for me to think of distributions, or differences between probability, density, and quantiles
without visualizing the shape of the distribution. So I figured it would be helpful to have
a visual guide to pnorm, dnorm, qnorm, and rnorm.

Table 13.1.: Table 1.1: Functions for the normal distribution
Function Input Output
pnorm x P(X < x)
dnorm x f(x), or the height of the density curve at x
qnorm q, a quantile from 0 to 1 x such that P(X < x) = q
rnorm n n random samples from the distribution

13.1. pnorm

This function gives the probability function for a normal distribution. If you do not specify
the mean and standard deviation, R defaults to standard normal. Figure 13.1

pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)

The R help file for pnorm provides the template above. The value you input for q is a
value on the x-axis, and the returned value is the area under the distribution curve to the
left of that point.

Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
i Please use `linewidth` instead.

149

13. Working with distribution functions

This function gives the probability function for a normal distribution. If you do not specify
the mean and standard deviation, R defaults to standard normal.

pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE) The R help file for pnorm
provides the template above. The value you input for q is a value on the x-axis, and the
returned value is the area under the distribution curve to the left of that point.

The option lower.tail = TRUE tells R to use the area to the left of the given point. This
is the default, so will remain true even without entering it. In order to compute the area
to the right of the given point, you can either switch to lower.tail = FALSE, or simply
calculate 1-pnorm() instead. This is demonstrated below.

0.50

0.0

0.1

0.2

0.3

0.4

−3 −2 −1 0 1 2 3

P is for Probability

pnorm(0)

Figure 13.1.: The pnorm function takes a quantile (value on the x-axis) and returns the
area under the curve to the left of that value.

The option lower.tail = TRUE tells R to use the area to the left of the given point. This
is the default, so will remain true even without entering it. In order to compute the area
to the right of the given point, you can either switch to lower.tail = FALSE, or simply
calculate 1-pnorm() instead.

150

13. Working with distribution functions

0.50

0.0

0.1

0.2

0.3

0.4

−3 −2 −1 0 1 2 3

P is for Probability

1−pnorm(0)

Figure 13.2.: The pnorm function takes a quantile (value on the x-axis) and returns the
area under the curve to the left of that value.

13.2. dnorm

This function calculates the probability density function (PDF) for the normal distribution.
It gives the probability density (height of the curve) at a specified value (x).

13.3. qnorm

This function calculates the quantiles of the normal distribution. It returns the value (x)
corresponding to a specified probability (p). It is the inverse of thepnorm function.

13.4. rnorm

print(r1)

151

13. Working with distribution functions

0.84

0.0

0.1

0.2

0.3

0.4

−3 −2 −1 0 1 2 3

P is for probability

pnorm(1)

Figure 13.3.: The pnorm function takes a quantile (value on the x-axis) and returns the
area under the curve to the left of that value.

0.0

0.1

0.2

0.3

0.4

−3 −2 −1 0 1 2 3

R is for Random generation

rnorm(n=5)

Output: c(−1.8, −0.8, 0.1, 0.45, 1.1)

Figure 13.13.: The rnorm function takes a number of samples and returns a vector of ran-
dom numbers from the normal distribution (with mean=0, sd=1 as defaults)

152

13. Working with distribution functions

0.16

0.0

0.1

0.2

0.3

0.4

−3 −2 −1 0 1 2 3

P is for probability

pnorm(−1)

Figure 13.4.: The pnorm function takes a quantile (value on the x-axis) and returns the
area under the curve to the left of that value.

13.5. IQ scores

Normal Distribution and its Application with IQ

The normal distribution, also known as the Gaussian distribution, is a continuous proba-
bility distribution characterized by its bell-shaped curve. It is defined by two parameters:
the mean (µ) and the standard deviation (�). The mean represents the central tendency
of the distribution, while the standard deviation represents the dispersion or spread of the
data.

The IQ scores are an excellent example of the normal distribution, as they are designed
to follow this distribution pattern. The mean IQ score is set at 100, and the standard
deviation is set at 15. This means that the majority of the population (about 68%) have
an IQ score between 85 and 115, while 95% of the population have an IQ score between 70
and 130.

• What is the probability of having an IQ score between 85 and 115?
pnorm(115, mean = 100, sd = 15) - pnorm(85, mean = 100, sd = 15)

• What is the 90th percentile of the IQ scores?

153

13. Working with distribution functions

0.40

0.0

0.1

0.2

0.3

0.4

−3 −2 −1 0 1 2 3

D is for Distribution

dnorm(0)

Figure 13.5.: The dnorm function returns the height of the normal distribution at a given
point.

qnorm(0.9, mean = 100, sd = 15)

• What is the probability of having an IQ score above 130?
1 - pnorm(130, mean = 100, sd = 15)

• What is the probability of having an IQ score below 70?
pnorm(70, mean = 100, sd = 15)

154

13. Working with distribution functions

0.24

0.0

0.1

0.2

0.3

0.4

−3 −2 −1 0 1 2 3

D is for Distribution

dnorm(1)

Figure 13.6.: The dnorm function returns the height of the normal distribution at a given
point.

155

13. Working with distribution functions

0.24

0.0

0.1

0.2

0.3

0.4

−3 −2 −1 0 1 2 3

D is for Distribution

dnorm(−1)

Figure 13.7.: The dnorm function returns the height of the normal distribution at a given
point.

156

13. Working with distribution functions

0
50%

0.0

0.1

0.2

0.3

0.4

−3 −2 −1 0 1 2 3

Q is for Quantile

qnorm(0.5)

Figure 13.8.: The qnorm function is the in-
verse of the pnorm function in
that it takes a probability and
gives the quantile.

−0.67
25%

0.0

0.1

0.2

0.3

0.4

−3 −2 −1 0 1 2 3

Q is for Quantile

qnorm(0.25)

Figure 13.9.: The qnorm function is the in-
verse of the pnorm function in
that it takes a probability and
gives the quantile.

−1.28
10%

0.0

0.1

0.2

0.3

0.4

−3 −2 −1 0 1 2 3

Q is for Quantile

qnorm(0.1)

Figure 13.10.: The qnorm function is the in-
verse of the pnorm function in
that it takes a probability and
gives the quantile.

0.67
75%

0.0

0.1

0.2

0.3

0.4

−3 −2 −1 0 1 2 3

Q is for Quantile

qnorm(0.75)

Figure 13.11.: The qnorm function is the in-
verse of the pnorm function in
that it takes a probability and
gives the quantile.

1.28
90%

0.0

0.1

0.2

0.3

0.4

−3 −2 −1 0 1 2 3

Q is for Quantile

qnorm(0.9)

Figure 13.12.: The qnorm function is the in-
verse of the pnorm function in
that it takes a probability and
gives the quantile.

157

14. The t-statistic and t-distribution

14.1. Background

The t-test is a statistical hypothesis test that is commonly used when the data are normally
distributed (follow a normal distribution) if the value of the population standard deviation
were known. When the population standard deviation is not known and is replaced by an
estimate based no the data, the test statistic follows a Student’s t distribution.

T-tests are handy hypothesis tests in statistics when you want to compare means. You can
compare a sample mean to a hypothesized or target value using a one-sample t-test. You
can compare the means of two groups with a two-sample t-test. If you have two groups
with paired observations (e.g., before and after measurements), use the paired t-test.

A t-test looks at the t-statistic, the t-distribution values, and the degrees of freedom to
determine the statistical significance. To conduct a test with three or more means, we
would use an analysis of variance.

The distriubution that the t-statistic follows was described in a famous paper (Student
1908) by “Student”, a pseudonym for William Sealy Gosset.

14.2. The Z-score and probability

Before talking about the t-distribution and t-scores, lets review the Z-score, its relation to
the normal distribution, and probability.

The Z-score is defined as:

𝑍 = 𝑥 − 𝜇
𝜎 (14.1)

where 𝜇 is a the population mean from which 𝑥 is drawn and 𝜎 is the population standard
deviation (taken as known, not estimated from the data).

The probability of observing a 𝑍 score of 𝑧 or greater can be calculated by 𝑝𝑛𝑜𝑟𝑚(𝑧, 𝜇, 𝜎).

158

https://en.wikipedia.org/wiki/Statistical_hypothesis_testing
https://en.wikipedia.org/wiki/William_Sealy_Gosset

14. The t-statistic and t-distribution

For example, let’s assume that our “population” is known and it truly has a mean 0 and
standard deviation 1. If we have observations drawn from that population, we can assign
a probability of seeing that observation by random chance under the assumption that the
null hypothesis is TRUE.

zscore = seq(-5,5,1)

For each value of zscore, let’s calculate the p-value and put the results in a data.frame.

df = data.frame(
zscore = zscore,
pval = pnorm(zscore, 0, 1)

)
df

zscore pval
1 -5 2.866516e-07
2 -4 3.167124e-05
3 -3 1.349898e-03
4 -2 2.275013e-02
5 -1 1.586553e-01
6 0 5.000000e-01
7 1 8.413447e-01
8 2 9.772499e-01
9 3 9.986501e-01
10 4 9.999683e-01
11 5 9.999997e-01

Why is the p-value of something 5 population standard deviations away from the mean
(zscore=5) nearly 1 in this calculation? What is the default for pnorm with respect to being
one-sided or two-sided?

Let’s plot the values of probability vs z-score:

plot(df$zscore, df$pval, type='b')

159

14. The t-statistic and t-distribution

−4 −2 0 2 4

0.
0

0.
4

0.
8

df$zscore

df
$p

va
l

This plot is the empirical cumulative density function (cdf) for our data. How can we use
it? If we know the z-score, we can look up the probability of observing that value. Since
we have constructed our experiment to follow the standard normal distribution, this cdf
also represents the cdf of the standard normal distribution.

14.2.1. Small diversion: two-sided pnorm function

The pnorm function returns the “one-sided” probability of having a value at least as extreme
as the observed 𝑥 and uses the “lower” tail by default. Let’s create a function that computes
two-sided p-values.

1. Take the absolute value of x
2. Compute pnorm with lower.tail=FALSE so we get lower p-values with larger values

of 𝑥.
3. Since we want to include both tails, we need to multiply the area (probability) re-

turned by pnorm by 2.

twosidedpnorm = function(x,mu=0,sd=1) {
2*pnorm(abs(x),mu,sd,lower.tail=FALSE)

}

And we can test this to see how likely it is to be 2 or 3 standard deviations from the
mean:

twosidedpnorm(2)

160

14. The t-statistic and t-distribution

[1] 0.04550026

twosidedpnorm(3)

[1] 0.002699796

14.3. The t-distribution

We spent time above working with z-scores and probability. An important aspect of working
with the normal distribution is that we MUST assume that we know the standard deviation.
Remember that the Z-score is defined as:

𝑍 = 𝑥 − 𝜇
𝜎

The formula for the population standard deviation is:

𝜎 =
√√√
⎷

1
𝑁

𝑁
∑
𝑖=1

(𝑥𝑖 − 𝜇)2 (14.2)

In general, the population standard deviation is taken as “known” as we did above.

If we do not but only have a sample from the population, instead of using the Z-score, we
use the t-score defined as:

𝑡 = 𝑥 − ̄𝑥
𝑠 (14.3)

This looks quite similar to the formula for Z-score, but here we have to estimate the
standard deviation, 𝑠 from the data. The formula for 𝑠 is:

𝑠 =
√√√
⎷

1
𝑁 − 1

𝑁
∑
𝑖=1

(𝑥𝑖 − ̄𝑥)2 (14.4)

Since we are estimating the standard deviation from the data, this leads to extra variability
that shows up as “fatter tails” for smaller sample sizes than for larger sample sizes. We can
see this by comparing the t-distribution for various numbers of degrees of freedom (sample
sizes).

161

14. The t-statistic and t-distribution

We can look at the effect of sample size on the distributions graphically by looking at the
densities for 3, 5, 10, 20 degrees of freedom and the normal distribution:

library(dplyr)
library(ggplot2)
t_values = seq(-6,6,0.01)
df = data.frame(

value = t_values,
t_3 = dt(t_values,3),
t_6 = dt(t_values,6),
t_10 = dt(t_values,10),
t_20 = dt(t_values,20),
Normal= dnorm(t_values)

) |>
tidyr::gather("Distribution", "density", -value)

ggplot(df, aes(x=value, y=density, color=Distribution)) +
geom_line()

0.0

0.1

0.2

0.3

0.4

−6 −3 0 3 6
value

de
ns

ity

Distribution

Normal

t_10

t_20

t_3

t_6

Figure 14.1.: t-distributions for various degrees of freedom. Note that the tails are fatter
for smaller degrees of freedom, which is a result of estimating the standard
deviation from the data.

162

14. The t-statistic and t-distribution

The dt and dnorm functions give the density of the distributions for each point.

df2 = df |>
group_by(Distribution) |>
arrange(value) |>
mutate(cdf=cumsum(density))

ggplot(df2, aes(x=value, y=cdf, color=Distribution)) +
geom_line()

0

25

50

75

100

−6 −3 0 3 6
value

cd
f

Distribution

Normal

t_10

t_20

t_3

t_6

14.3.1. p-values based on Z vs t

When we have a “sample” of data and want to compute the statistical significance of the
difference of the mean from the population mean, we calculate the standard deviation of
the sample means (standard error).

𝑧 = 𝑥 − 𝜇
𝜎/√𝑛

Let’s look at the relationship between the p-values of Z (from the normal distribution) vs
t for a sample of data.

163

14. The t-statistic and t-distribution

set.seed(5432)
samp = rnorm(5,mean = 0.5)
z = sqrt(length(samp)) * mean(samp) #simplifying assumption (sigma=1, mu=0)

And the p-value if we assume we know the standard deviation:

pnorm(z, lower.tail = FALSE)

[1] 0.02428316

In reality, we don’t know the standard deviation, so we have to estimate it from the data.
We can do this by calculating the sample standard deviation:

ts = sqrt(length(samp)) * mean(samp) / sd(samp)
pnorm(ts, lower.tail = FALSE)

[1] 0.0167297

pt(ts,df = length(samp)-1, lower.tail = FALSE)

[1] 0.0503001

14.3.2. Experiment

When sampling from a normal distribution, we often calculate p-values to test hypotheses or
determine the statistical significance of our results. The p-value represents the probability
of obtaining a test statistic as extreme or more extreme than the one observed, under the
null hypothesis.

In a typical scenario, we assume that the population mean and standard deviation are
known. However, in many real-life situations, we don’t know the true population standard
deviation, and we have to estimate it using the sample standard deviation (Equation 14.4).
This estimation introduces some uncertainty into our calculations, which affects the p-
values. When we include an estimate of the standard deviation, we switch from using the
standard normal (z) distribution to the t-distribution for calculating p-values.

What would happen if we used the normal distribution to calculate p-values when we use
the sample standard deviation? Let’s find out!

164

14. The t-statistic and t-distribution

1. Simulate a bunch of samples of size n from the standard normal distribution
2. Calculate the p-value distribution for those samples based on the normal.
3. Calculate the p-value distribution for those samples based on the normal, but with

the estimated standard deviation.
4. Calculate the p-value distribution for those samples based on the t-distribution.

Create a function that draws a sample of size n from the standard normal distribution.

zf = function(n) {
samp = rnorm(n)
z = sqrt(length(samp)) * mean(samp) / 1 #simplifying assumption (sigma=1, mu=0)
z

}

And give it a try:

zf(5)

[1] 0.7406094

Perform 10000 replicates of our sampling and z-scoring. We are using the assumption that
we know the population standard deviation; in this case, we do know since we are sampling
from the standard normal distribution.

z10k = replicate(10000,zf(5))
hist(pnorm(z10k))

165

14. The t-statistic and t-distribution

Histogram of pnorm(z10k)

pnorm(z10k)

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

0
40

0

And do the same, but now creating a t-score function. We are using the assumption that
we don’t know the population standard deviation; in this case, we must estimate it from
the data. Note the difference in the calculation of the t-score (ts) as compared to the
z-score (z).

tf = function(n) {
samp = rnorm(n)
now, using the sample standard deviation since we
"don't know" the population standard deviation
ts = sqrt(length(samp)) * mean(samp) / sd(samp)
ts

}

If we use those t-scores and calculate the p-values based on the normal distribution, the
histogram of those p-values looks like:

t10k = replicate(10000,tf(5))
hist(pnorm(t10k))

166

14. The t-statistic and t-distribution

Histogram of pnorm(t10k)

pnorm(t10k)

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

0
60

0

Since we are using the normal distribution to calculate the p-values, we are, in effect,
assuming that we know the population standard deviation. This assumption is incorrect,
and we can see that the p-values are not uniformly distributed between 0 and 1.

If we use those t-scores and calculate the p-values based on the t-distribution, the histogram
of those p-values looks like:

hist(pt(t10k,5))

Histogram of pt(t10k, 5)

pt(t10k, 5)

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

0
40

0
60

0

167

14. The t-statistic and t-distribution

Now, the p-values are uniformly distributed between 0 and 1, as expected.

What is a qqplot and how do we use it? A qqplot is a plot of the quantiles of two
distributions against each other. If the two distributions are identical, the points will fall
on a straight line. If the two distributions are different, the points will deviate from the
straight line. We can use a qqplot to compare the t-distribution to the normal distribution.
If the t-distribution is identical to the normal distribution, the points will fall on a straight
line. If the t-distribution is different from the normal distribution, the points will deviate
from the straight line. In this case, we can see that the t-distribution is different from the
normal distribution, as the points deviate from the straight line. What would happen if
we increased the sample size? The t-distribution would approach the normal distribution,
and the points would fall closer and closer to the straight line.

qqplot(z10k,t10k)
abline(0,1)

−4 −2 0 2 4

−
10

0
5

15

z10k

t1
0k

14.4. Summary of t-distribution vs normal distribution

The t-distribution is a family of probability distributions that depends on a parameter
called degrees of freedom, which is related to the sample size. The t-distribution ap-
proaches the standard normal distribution as the sample size increases but has heavier
tails for smaller sample sizes. This means that the t-distribution is more conservative in
calculating p-values for small samples, making it harder to reject the null hypothesis. In-
cluding an estimate of the standard deviation changes the way we calculate p-values by
switching from the standard normal distribution to the t-distribution, which accounts for

168

14. The t-statistic and t-distribution

the uncertainty introduced by estimating the population standard deviation from the sam-
ple. This adjustment is particularly important for small sample sizes, as it provides a more
accurate assessment of the statistical significance of our results.

14.5. t.test

14.5.1. One-sample

We are going to use the t.test function to perform a one-sample t-test. The t.test
function takes a vector of values as input that represents the sample values. In this case,
we’ll simulate our sample using the rnorm function and presume that our “effect-size” is
1.

x = rnorm(20,1)
small sample
Just use the first 5 values of the sample
t.test(x[1:5])

One Sample t-test

data: x[1:5]
t = 0.97599, df = 4, p-value = 0.3843
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
-1.029600 2.145843
sample estimates:
mean of x
0.5581214

In this case, we set up the experiment so that the null hypothesis is true (the true mean
is not zero, but actually 1). However, we only have a small sample size that leads to a
modest p-value.

Increasing the sample size allows us to see the effect more clearly.

t.test(x[1:20])

169

14. The t-statistic and t-distribution

One Sample t-test

data: x[1:20]
t = 3.8245, df = 19, p-value = 0.001144
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
0.3541055 1.2101894
sample estimates:
mean of x
0.7821474

14.5.2. two-sample

x = rnorm(10,0.5)
y = rnorm(10,-0.5)
t.test(x,y)

Welch Two Sample t-test

data: x and y
t = 3.4296, df = 17.926, p-value = 0.003003
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.5811367 2.4204048
sample estimates:
mean of x mean of y
0.7039205 -0.7968502

14.5.3. from a data.frame

In some situations, you may have data and groups as columns in a data.frame. See the
following data.frame, for example

df = data.frame(value=c(x,y),group=as.factor(rep(c('g1','g2'),each=10)))
df

170

14. The t-statistic and t-distribution

value group
1 1.12896674 g1
2 -1.26838101 g1
3 1.04577597 g1
4 1.69075585 g1
5 0.18672204 g1
6 1.99715092 g1
7 1.15424947 g1
8 0.37671442 g1
9 -0.09565723 g1
10 0.82290783 g1
11 -1.48530261 g2
12 -1.29200440 g2
13 -0.18778362 g2
14 0.59205742 g2
15 -2.10065248 g2
16 -0.29961560 g2
17 -0.38985115 g2
18 -2.47126235 g2
19 -0.63654380 g2
20 0.30245611 g2

R allows us to perform a t-test using the formula notation.

t.test(value ~ group, data=df)

Welch Two Sample t-test

data: value by group
t = 3.4296, df = 17.926, p-value = 0.003003
alternative hypothesis: true difference in means between group g1 and group g2 is not equal to 0
95 percent confidence interval:
0.5811367 2.4204048
sample estimates:
mean in group g1 mean in group g2

0.7039205 -0.7968502

You read that as value is a function of group. In practice, this will do a t-test between
the values in g1 vs g2.

171

14. The t-statistic and t-distribution

14.5.4. Equivalence to linear model

t.test(value ~ group, data=df, var.equal=TRUE)

Two Sample t-test

data: value by group
t = 3.4296, df = 18, p-value = 0.002989
alternative hypothesis: true difference in means between group g1 and group g2 is not equal to 0
95 percent confidence interval:
0.5814078 2.4201337
sample estimates:
mean in group g1 mean in group g2

0.7039205 -0.7968502

This is equivalent to:

res = lm(value ~ group, data=df)
summary(res)

Call:
lm(formula = value ~ group, data = df)

Residuals:
Min 1Q Median 3Q Max

-1.9723 -0.5600 0.2511 0.5252 1.3889

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.7039 0.3094 2.275 0.03538 *
groupg2 -1.5008 0.4376 -3.430 0.00299 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9785 on 18 degrees of freedom
Multiple R-squared: 0.3952, Adjusted R-squared: 0.3616
F-statistic: 11.76 on 1 and 18 DF, p-value: 0.002989

172

14. The t-statistic and t-distribution

14.6. Power calculations

The power of a statistical test is the probability that the test will reject the null hypothesis
when the alternative hypothesis is true. In other words, the power of a statistical test is
the probability of not making a Type II error. The power of a statistical test depends on
the significance level (alpha), the sample size, and the effect size.

The power.t.test function can be used to calculate the power of a one-sample t-test.

Looking at help("power.t.test"), we see that the function takes the following argu-
ments:

• n - sample size
• delta - effect size
• sd - standard deviation of the sample
• sig.level - significance level
• power - power

We need to supply four of these arguments to calculate the fifth. For example, if we want
to calculate the power of a one-sample t-test with a sample size of 5, a standard deviation
of 1, and an effect size of 1, we can use the following command:

power.t.test(n = 5, delta = 1, sd = 1, sig.level = 0.05)

Two-sample t test power calculation

n = 5
delta = 1

sd = 1
sig.level = 0.05

power = 0.2859276
alternative = two.sided

NOTE: n is number in *each* group

This gives a nice summary of the power calculation. We can also extract the power value
from the result:

173

14. The t-statistic and t-distribution

power.t.test(n = 5, delta = 1, sd = 1,
sig.level = 0.05, type='one.sample')$power

[1] 0.4013203

Tip

When getting results from a function that don’t look “computable” such as those
from power.t.test, you can use the $ operator to extract the value you want. In
this case, we want the power value from the result of power.t.test.
How would you know what to extract? You can use the names function or the str
function to see the structure of the result. For example:

names(power.t.test(n = 5, delta = 1, sd = 1,
sig.level = 0.05, type='one.sample'))

[1] "n" "delta" "sd" "sig.level" "power"
[6] "alternative" "note" "method"

or
str(power.t.test(n = 5, delta = 1, sd = 1,

sig.level = 0.05, type='one.sample'))

List of 8
$ n : num 5
$ delta : num 1
$ sd : num 1
$ sig.level : num 0.05
$ power : num 0.401
$ alternative: chr "two.sided"
$ note : NULL
$ method : chr "One-sample t test power calculation"
- attr(*, "class")= chr "power.htest"

Alternatively, we may know a lot about our experimental system and want to calculate
the sample size needed to achieve a certain power. For example, if we want to achieve a
power of 0.8 with a standard deviation of 1 and an effect size of 1, we can use the following
command:

174

14. The t-statistic and t-distribution

power.t.test(delta = 1, sd = 1, sig.level = 0.05, power = 0.8, type = "one.sample")

One-sample t test power calculation

n = 9.937864
delta = 1

sd = 1
sig.level = 0.05

power = 0.8
alternative = two.sided

The power.t.test function is convenient and quite fast. As we’ve seen before, though,
sometimes the distribution of the test statistics is now easily calculated. In those cases, we
can use simulation to calculate the power of a statistical test. For example, if we want to
calculate the power of a one-sample t-test with a sample size of 5, a standard deviation of
1, and an effect size of 1, we can use the following command:

sim_t_test_pval <- function(n = 5, delta = 1, sd = 1, sig.level = 0.05) {
x = rnorm(n, delta, sd)
t.test(x)$p.value <= sig.level

}
pow = mean(replicate(1000, sim_t_test_pval()))
pow

[1] 0.405

Let’s break this down. First, we define a function called sim_t_test_pval that takes the
same arguments as the power.t.test function. Inside the function, we simulate a sample
of size n from a normal distribution with mean delta and standard deviation sd. Then,
we perform a one-sample t-test on the sample and return a logical value indicating whether
the p-value is less than the significance level. Next, we use the replicate function to
repeat the simulation 1000 times. Finally, we calculate the proportion of simulations in
which the p-value was less than the significance level. This proportion is an estimate of
the power of the one-sample t-test.

Let’s compare the results of the power.t.test function and our simulation-based ap-
proach:

175

14. The t-statistic and t-distribution

power.t.test(n = 5, delta = 1, sd = 1, sig.level = 0.05, type='one.sample')$power

[1] 0.4013203

mean(replicate(1000, sim_t_test_pval(n = 5, delta = 1, sd = 1, sig.level = 0.05)))

[1] 0.414

14.7. Resources

See the pwr package for more information on power calculations.

176

https://cran.r-project.org/web/packages/pwr/vignettes/pwr-vignette.html

15. K-means clustering

15.1. History of the k-means algorithm

The k-means clustering algorithm was first proposed by Stuart Lloyd in 1957 as a technique
for pulse-code modulation. However, it was not published until 1982. In 1965, Edward
W. Forgy published an essentially identical method, which became widely known as the
k-means algorithm. Since then, k-means clustering has become one of the most popular
unsupervised learning techniques in data analysis and machine learning.

K-means clustering is a method for finding patterns or groups in a dataset. It is an
unsupervised learning technique, meaning that it doesn’t rely on previously labeled data
for training. Instead, it identifies structures or patterns directly from the data based on
the similarity between data points (see Figure 15.1).

Figure 15.1.: K-means clustering takes a dataset and divides it into k clusters.

In simple terms, k-means clustering aims to divide a dataset into k distinct groups or
clusters, where each data point belongs to the cluster with the nearest mean (average).

177

15. K-means clustering

The goal is to minimize the variability within each cluster while maximizing the differences
between clusters. This helps to reveal hidden patterns or relationships in the data that
might not be apparent otherwise.

15.2. The k-means algorithm

The k-means algorithm follows these general steps:

1. Choose the number of clusters k.
2. Initialize the cluster centroids randomly by selecting k data points from the dataset.
3. Assign each data point to the nearest centroid.
4. Update the centroids by computing the mean of all the data points assigned to each

centroid.
5. Repeat steps 3 and 4 until the centroids no longer change or a certain stopping

criterion is met (e.g., a maximum number of iterations).

The algorithm converges when the centroids stabilize or no longer change significantly. The
final clusters represent the underlying patterns or structures in the data. Advantages and
disadvantages of k-means clustering

15.3. Pros and cons of k-means clustering

Compared to other clustering algorithms, k-means has several advantages:

• Simplicity and ease of implementation The k-means algorithm is relatively
straightforward and can be easily implemented, even for large datasets.

• Scalability The algorithm can be adapted for large datasets using various optimiza-
tion techniques or parallel processing.

• Speed K-means is generally faster than other clustering algorithms, especially when
the number of clusters k is small.

• Interpretability The results of k-means clustering are easy to understand, as the
algorithm assigns each data point to a specific cluster based on its similarity to
the cluster’s centroid.

However, k-means clustering has several disadvantages as well:

178

15. K-means clustering

• Choice of k Selecting the appropriate number of clusters can be challenging and
often requires domain knowledge or experimentation. A poor choice of k may
yield poor results.

• Sensitivity to initial conditions The algorithm’s results can vary depending on the
initial placement of centroids. To overcome this issue, the algorithm can be run
multiple times with different initializations and the best solution can be chosen
based on a criterion (e.g., minimizing within-cluster variation).

• Assumes spherical clusters K-means assumes that clusters are spherical and evenly
sized, which may not always be the case in real-world datasets. This can lead to
poor performance if the underlying clusters have different shapes or densities.

• Sensitivity to outliers The algorithm is sensitive to outliers, which can heavily in-
fluence the position of centroids and the final clustering result. Preprocessing
the data to remove or mitigate the impact of outliers can help improve the
performance of k-means clustering.

Despite limitations, k-means clustering remains a popular and widely used method for
exploring and analyzing data, particularly in biological data analysis, where identifying
patterns and relationships can provide valuable insights into complex systems and pro-
cesses.

15.4. An example of k-means clustering

15.4.1. The data and experimental background

The data we are going to use are from DeRisi, Iyer, and Brown (1997). From their ab-
stract:

DNA microarrays containing virtually every gene of Saccharomyces cerevisiae
were used to carry out a comprehensive investigation of the temporal program
of gene expression accompanying the metabolic shift from fermentation to res-
piration. The expression profiles observed for genes with known metabolic func-
tions pointed to features of the metabolic reprogramming that occur during the
diauxic shift, and the expression patterns of many previously uncharacterized
genes provided clues to their possible functions.

These data are available from NCBI GEO as GSE28.

In the case of the baker’s or brewer’s yeast Saccharomyces cerevisiae growing on glucose
with plenty of aeration, the diauxic growth pattern is commonly observed in batch culture.

179

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28

15. K-means clustering

During the first growth phase, when there is plenty of glucose and oxygen available, the
yeast cells prefer glucose fermentation to aerobic respiration even though aerobic respiration
is the more efficient pathway to grow on glucose. This experiment profiles gene expression
for 6400 genes over a time course during which the cells are undergoing a diauxic shift.

The data in deRisi et al. have no replicates and are time course data. Sometimes, seeing
how groups of genes behave can give biological insight into the experimental system or
the function of individual genes. We can use clustering to group genes that have a similar
expression pattern over time and then potentially look at the genes that do so.

Our goal, then, is to use kmeans clustering to divide highly variable (informative) genes
into groups and then to visualize those groups.

15.5. Getting data

These data were deposited at NCBI GEO back in 2002. GEOquery can pull them out
easily.

library(GEOquery)
gse = getGEO("GSE28")[[1]]
class(gse)

[1] "ExpressionSet"
attr(,"package")
[1] "Biobase"

GEOquery is a little dated and was written before the SummarizedExperiment existed.
However, Bioconductor makes a conversion from the old ExpressionSet that GEOquery
uses to the SummarizedExperiment that we see so commonly used now.

library(SummarizedExperiment)
gse = as(gse, "SummarizedExperiment")
gse

class: SummarizedExperiment
dim: 6400 7
metadata(3): experimentData annotation protocolData
assays(1): exprs
rownames(6400): 1 2 ... 6399 6400

180

https://en.wikipedia.org/wiki/Diauxie

15. K-means clustering

rowData names(20): ID ORF ... FAILED IS_CONTAMINATED
colnames(7): GSM887 GSM888 ... GSM892 GSM893
colData names(33): title geo_accession ... supplementary_file
data_row_count

Taking a quick look at the colData(), it might be that we want to reorder the columns a
bit.

colData(gse)$title

[1] "diauxic shift timecourse: 15.5 hr" "diauxic shift timecourse: 0 hr"
[3] "diauxic shift timecourse: 18.5 hr" "diauxic shift timecourse: 9.5 hr"
[5] "diauxic shift timecourse: 11.5 hr" "diauxic shift timecourse: 13.5 hr"
[7] "diauxic shift timecourse: 20.5 hr"

So, we can reorder by hand to get the time course correct:

gse = gse[, c(2,4,5,6,1,3,7)]

15.6. Preprocessing

In gene expression data analysis, the primary objective is often to identify genes that
exhibit significant differences in expression levels across various conditions, such as diseased
vs. healthy samples or different time points in a time-course experiment. However, gene
expression datasets are typically large, noisy, and contain numerous genes that do not
exhibit substantial changes in expression levels. Analyzing all genes in the dataset can be
computationally intensive and may introduce noise or false positives in the results.

One common approach to reduce the complexity of the dataset and focus on the most
informative genes is to subset the genes based on their standard deviation in expression
levels across the samples. The standard deviation is a measure of dispersion or variability in
the data, and genes with high standard deviations have more variation in their expression
levels across the samples.

By selecting genes with high standard deviations, we focus on genes that show relatively
large changes in expression levels across different conditions. These genes are more likely
to be biologically relevant and involved in the underlying processes or pathways of interest.
In contrast, genes with low standard deviations exhibit little or no change in expression
levels and are less likely to be informative for the analysis. It turns out that applying

181

15. K-means clustering

filtering based on criteria such as standard deviation can also increase power and reduce
false positives in the analysis (Bourgon, Gentleman, and Huber 2010).

To subset the genes for analysis based on their standard deviation, the following steps
can be followed: Calculate the standard deviation of each gene’s expression levels across
all samples. Set a threshold for the standard deviation, which can be determined based
on domain knowledge, data distribution, or a specific percentile of the standard deviation
values (e.g., selecting the top 10% or 25% of genes with the highest standard deviations).
Retain only the genes with a standard deviation above the chosen threshold for further
analysis.

By subsetting the genes based on their standard deviation, we can reduce the complexity
of the dataset, speed up the subsequent analysis, and increase the likelihood of detecting
biologically meaningful patterns and relationships in the gene expression data. The thresh-
old for the standard deviation cutoff is rather arbitrary, so it may be beneficial to try a
few to check for sensitivity of findings.

sds = apply(assays(gse)[[1]], 1, sd)
hist(sds)

Histogram of sds

sds

F
re

qu
en

cy

0.0 0.5 1.0 1.5 2.0 2.5

0
50

0
15

00

Figure 15.2.: Histogram of standard deviations for all genes in the deRisi dataset.

Examining the plot, we can see that the most highly variable genes have an sd > 0.8 or so
(arbitrary). We can, for convenience, create a new SummarizedExperiment that contains
only our most highly variable genes.

182

15. K-means clustering

idx = sds>0.8 & !is.na(sds)
gse_sub = gse[idx,]

15.7. Clustering

Now, gse_sub contains a subset of our data.

The kmeans function takes a matrix and the number of clusters as arguments.

k = 4
km = kmeans(assays(gse_sub)[[1]], 4)

The km kmeans result contains a vector, km$cluster, which gives the cluster associated
with each gene. We can plot the genes for each cluster to see how these different genes
behave.

expression_values = assays(gse_sub)[[1]]
par(mfrow=c(2,2), mar=c(3,4,1,2)) # this allows multiple plots per page
for(i in 1:k) {

matplot(t(expression_values[km$cluster==i,]), type='l', ylim=c(-3,3),
ylab = paste("cluster", i))

}

183

15. K-means clustering

1 2 3 4 5 6 7

−
3

−
1

1
3

cl
us

te
r

1

1 2 3 4 5 6 7

−
3

−
1

1
3

cl
us

te
r

2
1 2 3 4 5 6 7

−
3

−
1

1
3

cl
us

te
r

3

1 2 3 4 5 6 7

−
3

−
1

1
3

cl
us

te
r

4

Figure 15.3.: Gene expression profiles for the four clusters identified by k-means clustering.
Each line represents a gene in the cluster, and each column represents a time
point in the experiment. Each cluster shows a distinct trend where the genes
in the cluster are potentially co-regulated.

Try this with different size k. Perhaps go back to choose more genes (using a smaller cutoff
for sd).

15.8. Summary

In this lesson, we have learned how to use k-means clustering to identify groups of genes
that behave similarly over time. We have also learned how to subset our data to focus on
the most informative genes.

184

16. Machine Learning

16.1. What is Machine Learning?

Machine learning is a subfield of artificial intelligence that focuses on the development of
algorithms and models that enable computers to learn and make decisions or predictions
without explicit programming. It has emerged as a powerful tool for solving complex
problems across various industries, including healthcare, finance, marketing, and natural
language processing. This chapter provides an overview of machine learning, its types, key
concepts, applications, and challenges.

Machine learning in biology is a really broad topic. Greener et al. (2022) present a
nice overview of the different types of machine learning methods that are used in biology.
Libbrecht and Noble (2015) also present an early review of machine learning in genetics
and genomics.

16.2. Classes of Machine Learning

16.2.1. Supervised learning

Supervised learning is a type of machine learning where the model learns from labeled data,
i.e., input-output pairs, to make predictions. It includes tasks like regression (predicting
continuous values) and classification (predicting discrete classes or categories).

16.2.2. Unsupervised learning

Unsupervised learning involves learning from unlabeled data, where the model discovers
patterns or structures within the data. Common unsupervised learning tasks include clus-
tering (grouping similar data points), dimensionality reduction (reducing the number of
features or variables), and anomaly detection (identifying unusual data points).

185

16. Machine Learning

Terminology and Concepts

• Data Data is the foundation of machine learning and can be structured (tabu-
lar) or unstructured (text, images, audio). It is usually divided into train-
ing, validation, and testing sets for model development and evaluation.

• Features Features are the variables or attributes used to describe the data
points. Feature engineering and selection are crucial steps in machine
learning to improve model performance and interpretability.

• Models and Algorithms Models are mathematical representations of the rela-
tionship between features and the target variable(s). Algorithms are the
methods used to train models, such as linear regression, decision trees, and
neaural networks.

• Hyperparameters and Tuning Hyperparameters are adjustable parameters
that control the learning process of an algorithm. Tuning involves find-
ing the optimal set of hyperparameters to improve model performance.

• Evaluation Metrics Evaluation metrics quantify the performance of a model,
such as accuracy, precision, recall, F1-score (for classification), and mean
squared error, R-squared (for regression).

set.seed(123)
sinsim <- function(n,sd=0.1) {
x <- seq(0,1,length.out=n)
y <- sin(2*pi*x) + rnorm(n,0,sd)
return(data.frame(x=x,y=y))

}
dat <- sinsim(100,0.25)
library(ggplot2)
library(patchwork)
p_base <- ggplot(dat,aes(x=x,y=y)) +
geom_point(alpha=0.7) +
theme_bw()
p_lm <- p_base +
geom_smooth(method="lm", se=FALSE, alpha=0.6, formula = y ~ x)
p_lmsin <- p_base +
geom_smooth(method="lm",formula=y~sin(2*pi*x), se=FALSE, alpha=0.6)
p_loess_wide <- p_base +
geom_smooth(method="loess",span=0.5, se=FALSE, alpha=0.6, formula = y ~ x)

186

16. Machine Learning

p_loess_narrow <- p_base +
geom_smooth(method="loess",span=0.1, se=FALSE, alpha=0.6, formula = y ~ x)
p_lm + p_lmsin + p_loess_wide + p_loess_narrow + plot_layout(ncol=2) +
plot_annotation(tag_levels = 'A') &
theme(plot.tag = element_text(size = 8))

−1

0

1

0.00 0.25 0.50 0.75 1.00
x

y

A

−1

0

1

0.00 0.25 0.50 0.75 1.00
x

y

B

−1

0

1

0.00 0.25 0.50 0.75 1.00
x

y

C

−1

0

1

0.00 0.25 0.50 0.75 1.00
x

y
D

Figure 16.1.: Data simulated according to the function 𝑓(𝑥) = 𝑠𝑖𝑛(2𝜋𝑥) + 𝑁(0, 0.25) fitted
with four different models. A) A simple linear model demonstrates underfit-
ting. B) A linear model with a sin function (𝑦 = 𝑠𝑖𝑛(2𝜋𝑥)) and C) a loess
model with a wide span (0.5) demonstrate good fits. D) A loess model with
a narrow span (0.1) is a good example of overfitting.

In Figure 16.1, we simulate data according to the function 𝑓(𝑥) = 𝑠𝑖𝑛(2𝜋𝑥)+𝑁(0, 0.25) and
fit four different models. Choosing a model that is too simple (A) will result in underfitting
the data, while choosing a model that is too complex (D) will result in overfitting the
data.

When thinking about machine learning, it can help to have a simple framework in mind.
In Figure 16.2, we present a simple view of machine learning according to the scikit-learn
package.

We’re going to focus on supervised learning here. Here is a rough schematic (see Figure 16.3)
of the supervised learning process from the mlr3 book.

187

https://scikit-learn.org/stable/

16. Machine Learning

Figure 16.2.: A simple view of machine learning according the sklearn.

Figure 16.3.: A schematic of the supervised learning process.

188

16. Machine Learning

In nearly all cases, we will have a training set and a test set. The training set is used to
train the model, and the test set is used to evaluate the model (see Figure 16.4). Even
when we don’t have a separate test set, we will usually create one by splitting the data.

Figure 16.4.: Training and testing sets.

189

16. Machine Learning

16.3. Supervised Learning

16.3.1. Linear regression

In statistics, linear regression is a linear approach for modelling the relationship be-
tween a scalar response and one or more explanatory variables (also known as dependent
and independent variables). The case of one explanatory variable is called simple linear
regression; for more than one, the process is called multiple linear regression. This
term is distinct from multivariate linear regression, where multiple correlated dependent
variables are predicted, rather than a single scalar variable.

In linear regression, the relationships are modeled using linear predictor functions whose
unknown model parameters are estimated from the data. Such models are called linear
models. Most commonly, the conditional mean of the response given the values of the
explanatory variables (or predictors) is assumed to be an affine function of those values;
less commonly, the conditional median or some other quantile is used. Like all forms of
regression analysis, linear regression focuses on the conditional probability distribution
of the response given the values of the predictors, rather than on the joint probability
distribution of all of these variables, which is the domain of multivariate analysis.

Linear regression was the first type of regression analysis to be studied rigorously, and to
be used extensively in practical applications. This is because models which depend linearly
on their unknown parameters are easier to fit than models which are non-linearly related
to their parameters and because the statistical properties of the resulting estimators are
easier to determine.

190

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Linearity
https://en.wikipedia.org/wiki/Scalar_(mathematics)
https://en.wikipedia.org/wiki/Dependent_and_independent_variables
https://en.wikipedia.org/wiki/Dependent_and_independent_variables
https://en.wikipedia.org/wiki/Simple_linear_regression
https://en.wikipedia.org/wiki/Simple_linear_regression
https://en.wikipedia.org/wiki/Multivariate_linear_regression
https://en.wikipedia.org/wiki/Correlation_and_dependence
https://en.wikipedia.org/wiki/Linear_predictor_function
https://en.wikipedia.org/wiki/Parameters
https://en.wikipedia.org/wiki/Estimation_theory
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Linear_model
https://en.wikipedia.org/wiki/Linear_model
https://en.wikipedia.org/wiki/Conditional_expectation
https://en.wikipedia.org/wiki/Affine_transformation
https://en.wikipedia.org/wiki/Median
https://en.wikipedia.org/wiki/Quantile
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Conditional_probability_distribution
https://en.wikipedia.org/wiki/Joint_probability_distribution
https://en.wikipedia.org/wiki/Joint_probability_distribution
https://en.wikipedia.org/wiki/Multivariate_analysis

16. Machine Learning

16.3.2. K-nearest Neighbor

Figure 16.5.: Figure. The k-nearest neighbor algorithm can be used for regression or
classification.

The k-nearest neighbors algorithm (k-NN) is a non-parametric supervised learning
method first developed by Evelyn Fix and Joseph Hodges in 1951, and later expanded by
Thomas Cover. It is used for classification and regression. In both cases, the input consists
of the k closest training examples in a data set.

The k-nearest neighbor (k-NN) algorithm is a simple, yet powerful, supervised machine
learning method used for classification and regression tasks. It is an instance-based, non-
parametric learning method that stores the entire training dataset and makes predictions
based on the similarity between data points. The underlying principle of the k-NN algo-
rithm is that similar data points (those that are close to each other in multidimensional
space) are likely to have similar outcomes or belong to the same class.

Here’s a description of how the k-NN algorithm works:

191

https://en.wikipedia.org/wiki/Non-parametric_statistics
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Evelyn_Fix
https://en.wikipedia.org/wiki/Joseph_Lawson_Hodges_Jr.
https://en.wikipedia.org/wiki/Thomas_M._Cover
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Data_set

16. Machine Learning

1. Determine the value of k: The first step is to choose the number of nearest neighbors
(k) to consider when making predictions. The value of k is a user-defined hyperpa-
rameter and can significantly impact the algorithm’s performance. A small value of
k can lead to overfitting, while a large value may result in underfitting.

2. Compute distance: Calculate the distance between the new data point (query point)
and each data point in the training dataset. The most common distance metrics used
are Euclidean, Manhattan, and Minkowski distance. The choice of distance metric
depends on the problem and the nature of the data.

3. Find k-nearest neighbors: Identify the k data points in the training dataset that are
closest to the query point, based on the chosen distance metric.

4. Make predictions: Once the k-nearest neighbors are identified, the final step is to
make predictions. The prediction for the query point can be made in two ways:

a. For classification, determine the class labels of the k-nearest neighbors and assign
the class label with the highest frequency (majority vote) to the query point. In
case of a tie, one can choose the class with the smallest average distance to the
query point or randomly select one among the tied classes.

b. For regression tasks, the k-NN algorithm follows a similar process, but instead
of majority voting, it calculates the mean (or median) of the target values of
the k-nearest neighbors and assigns it as the prediction for the query point.

The k-NN algorithm is known for its simplicity, ease of implementation, and ability to
handle multi-class problems. However, it has some drawbacks, such as high computational
cost (especially for large datasets), sensitivity to the choice of k and distance metric, and
poor performance with high-dimensional or noisy data. Scaling and preprocessing the
data, as well as using dimensionality reduction techniques, can help mitigate some of these
issues.

• In k-NN classification, the output is a class membership. An object is classified by
a plurality vote of its neighbors, with the object being assigned to the class most
common among its k nearest neighbors (k is a positive integer, typically small). If
k = 1, then the object is simply assigned to the class of that single nearest neighbor.

• In k-NN regression, the output is the property value for the object. This value is the
average of the values of k nearest neighbors.

k-NN is a type of classification where the function is only approximated locally and all
computation is deferred until function evaluation. Since this algorithm relies on distance
for classification, if the features represent different physical units or come in vastly different
scales then normalizing the training data can improve its accuracy dramatically.

Both for classification and regression, a useful technique can be to assign weights to the
contributions of the neighbors, so that the nearer neighbors contribute more to the average

192

https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Classification
https://en.wikipedia.org/wiki/Normalization_(statistics)%20%22Normalization%20(statistics)%22

16. Machine Learning

than the more distant ones. For example, a common weighting scheme consists in giving
each neighbor a weight of 1/d, where d is the distance to the neighbor.

The neighbors are taken from a set of objects for which the class (for k-NN classification)
or the object property value (for k-NN regression) is known. This can be thought of as the
training set for the algorithm, though no explicit training step is required.

16.4. Penalized regression

Adapted from http://www.sthda.com/english/articles/37-model-selection-essentials-in-
r/153-penalized-regression-essentials-ridge-lasso-elastic-net/.

Penalized regression is a type of regression analysis that introduces a penalty term to the
loss function in order to prevent overfitting and improve the model’s ability to generalize.
Remember that in regression, the loss function is the sum of squares Equation 16.1.

𝐿 =
𝑛

∑
𝑖=0

(̂𝑦𝑖 − 𝑦𝑖)
2 (16.1)

In Equation 16.1, ̂𝑦𝑖 is the predicted output, 𝑦𝑖 is the actual output, and n is the number of
observations. The goal of regression is to minimize the loss function by finding the optimal
values of the model parameters or coefficients. The model parameters are estimated using
the training data. The model is then evaluated using the test data. If the model performs
well on the training data but poorly on the test data, it is said to be overfit. Overfitting
occurs when the model learns the training data too well, including the noise, and is not able
to generalize well to new data. This is a common problem in machine learning, particularly
when there are a large number of predictors compared to the number of observations, and
can be addressed by penalized regression.

The two most common types of penalized regression are Ridge Regression (L2 penalty) and
LASSO Regression (L1 penalty). Both Ridge and LASSO help to reduce model complexity
and prevent over-fitting which may result from simple linear regression. However, the choice
between Ridge and LASSO depends on the situation and the dataset at hand. If feature
selection is important for the interpretation of the model, LASSO might be preferred. If
the goal is prediction accuracy and the model needs to retain all features, Ridge might be
the better choice.

193

16. Machine Learning

16.4.1. Ridge regression

Ridge regression shrinks the regression coefficients, so that variables, with minor contribu-
tion to the outcome, have their coefficients close to zero. The shrinkage of the coefficients
is achieved by penalizing the regression model with a penalty term called L2-norm, which
is the sum of the squared coefficients. The amount of the penalty can be fine-tuned using a
constant called lambda (�). Selecting a good value for � is critical. When �=0, the penalty
term has no effect, and ridge regression will produce the classical least square coefficients.
However, as � increases to infinite, the impact of the shrinkage penalty grows, and the ridge
regression coefficients will get close zero. The loss function for Ridge Regression is:

𝐿 =
𝑛

∑
𝑖=0

(̂𝑦𝑖 − 𝑦𝑖)
2 + 𝜆

𝑘
∑
𝑗=0

𝛽2
𝑗 (16.2)

Here, ̂𝑦𝑖 is the predicted output, 𝑦𝑖 is the actual output, 𝛽𝑗 represents the model parameters
or coefficients, and � is the regularization parameter. The second term, ���j^2, is the penalty
term where all parameters are squared and summed. Ridge regression tends to shrink the
coefficients but doesn’t necessarily zero them.

Note that, in contrast to the ordinary least square regression, ridge regression is highly
affected by the scale of the predictors. Therefore, it is better to standardize (i.e., scale)
the predictors before applying the ridge regression (James et al. 2014), so that all the
predictors are on the same scale. The standardization of a predictor x, can be achieved
using the formula 𝑥′ = 𝑥

𝑠𝑑(𝑥) , where 𝑠𝑑(𝑥) is the standard deviation of 𝑥. The consequence
of this is that, all standardized predictors will have a standard deviation of one allowing
the final fit to not depend on the scale on which the predictors are measured.

One important advantage of the ridge regression, is that it still performs well, compared to
the ordinary least square method (see Equation 16.1), in a situation where you have a large
multivariate data with the number of predictors (p) larger than the number of observations
(n). One disadvantage of the ridge regression is that, it will include all the predictors in the
final model, unlike the stepwise regression methods, which will generally select models that
involve a reduced set of variables. Ridge regression shrinks the coefficients towards zero,
but it will not set any of them exactly to zero. The LASSO regression is an alternative
that overcomes this drawback.

16.4.2. LASSO regression

LASSO stands for Least Absolute Shrinkage and Selection Operator. It shrinks the regres-
sion coefficients toward zero by penalizing the regression model with a penalty term called

194

16. Machine Learning

L1-norm, which is the sum of the absolute coefficients. In the case of LASSO regression,
the penalty has the effect of forcing some of the coefficient estimates, with a minor con-
tribution to the model, to be exactly equal to zero. This means that, LASSO can be also
seen as an alternative to the subset selection methods for performing variable selection in
order to reduce the complexity of the model. As in ridge regression, selecting a good value
of 𝜆 for the LASSO is critical. The loss function for LASSO Regression is:

𝐿 =
𝑛

∑
𝑖=0

(̂𝑦𝑖 − 𝑦𝑖)
2 + 𝜆

𝑘
∑
𝑗=0

|𝛽𝑗| (16.3)

Similar to Ridge, ŷi is the predicted output, yi is the actual output, �j represents the model
parameters or coefficients, and � is the regularization parameter. The second term, ��|�j|, is
the penalty term where the absolute values of all parameters are summed. LASSO regres-
sion tends to shrink the coefficients and can zero out some of them, effectively performing
variable selection.

One obvious advantage of LASSO regression over ridge regression, is that it produces sim-
pler and more interpretable models that incorporate only a reduced set of the predictors.
However, neither ridge regression nor the LASSO will universally dominate the other. Gen-
erally, LASSO might perform better in a situation where some of the predictors have large
coefficients, and the remaining predictors have very small coefficients. Ridge regression will
perform better when the outcome is a function of many predictors, all with coefficients of
roughly equal size (James et al. 2014).

Cross-validation methods can be used for identifying which of these two techniques is better
on a particular data set.

16.4.3. Elastic Net

Elastic Net produces a regression model that is penalized with both the L1-norm and L2-
norm. The consequence of this is to effectively shrink coefficients (like in ridge regression)
and to set some coefficients to zero (as in LASSO).

16.4.4. Classification and Regression Trees (CART)

Decision Tree Learning is supervised learning approach used in statistics, data mining and
machine learning. In this formalism, a classification or regression decision tree is used as
a predictive model to draw conclusions about a set of observations. Decision trees are a
popular machine learning method used for both classification and regression tasks. They
are hierarchical, tree-like structures that model the relationship between features and the

195

https://en.wikipedia.org/wiki/Decision_tree_learning

16. Machine Learning

target variable by recursively splitting the data into subsets based on the feature values.
Each internal node in the tree represents a decision or test on a feature, and each branch
represents the outcome of that test. The leaf nodes contain the final prediction, which
is the majority class for classification tasks or the mean/median of the target values for
regression tasks.

Here’s an overview of the decision tree learning process:

• Select the best feature and split value: Start at the root node and choose the feature
and split value that results in the maximum reduction of impurity (or increase in
information gain) in the child nodes. For classification tasks, impurity measures like
Gini index or entropy are commonly used, while for regression tasks, mean squared
error (MSE) or mean absolute error (MAE) can be used.

• Split the data: Partition the dataset into subsets based on the chosen feature and
split value.

• Recursion: Repeat steps 1 and 2 for each subset until a stopping criterion is met.
Stopping criteria can include reaching a maximum tree depth, a minimum number
of samples per leaf, or no further improvement in impurity.

• Prune the tree (optional): To reduce overfitting, decision trees can be pruned by
removing branches that do not significantly improve the model’s performance on the
validation dataset. This can be done using techniques like reduced error pruning or
cost-complexity pruning.

Decision trees have several advantages, such as:

• Interpretability They are easy to understand, visualize, and explain, even for non-
experts.

• Minimal data preprocessing Decision trees can handle both numerical and categor-
ical data, and they are robust to outliers and missing values.

• Non-linear relationships They can capture complex non-linear relationships between
features and the target variable.

However, decision trees also have some drawbacks:

• Overfitting They are prone to overfitting, especially when the tree is deep or has few
samples per leaf. Pruning and setting stopping criteria can help mitigate this
issue.

• Instability Small changes in the data can lead to different tree structures. This can be
addressed by using ensemble methods like random forests or gradient boosting
machines (GBMs).

196

16. Machine Learning

Figure 16.6.: An example of a decision tree that performs classification, also sometimes
called a classification tree.

197

16. Machine Learning

• Greedy learning Decision tree algorithms use a greedy approach, meaning they make
locally optimal choices at each node. This may not always result in a globally
optimal tree.

Despite these limitations, decision trees are widely used in various applications due to their
simplicity, interpretability, and ability to handle diverse data types.

16.4.5. RandomForest

Random forests or random decision forests is an ensemble learning method for clas-
sification, regression and other tasks that operates by constructing a multitude of decision
trees at training time. For classification tasks, the output of the random forest is the class
selected by most trees. For regression tasks, the mean or average prediction of the individ-
ual trees is returned. Random decision forests correct for decision trees’ habit of overfitting
to their training set. Random forests generally outperform decision trees, but their accu-
racy is lower than gradient boosted trees[citation needed]. However, data characteristics
can affect their performance.

The first algorithm for random decision forests was created in 1995 by Tin Kam Ho using
the random subspace method, which, in Ho’s formulation, is a way to implement the
“stochastic discrimination” approach to classification proposed by Eugene Kleinberg.

An extension of the algorithm was developed by Leo Breiman and Adele Cutler, who
registered “Random Forests” as a trademark in 2006 (as of 2019[update], owned by Minitab,
Inc.). The extension combines Breiman’s “bagging” idea and random selection of features,
introduced first by Ho and later independently by Amit and Geman in order to construct
a collection of decision trees with controlled variance.

Random forests are frequently used as “blackbox” models in businesses, as they generate
reasonable predictions across a wide range of data while requiring little configuration.

198

https://en.wikipedia.org/wiki/Ensemble_learning
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Overfitting
https://en.wikipedia.org/wiki/Test_set
https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Wikipedia:Citation_needed
https://en.wikipedia.org/wiki/Tin_Kam_Ho
https://en.wikipedia.org/wiki/Random_subspace_method
https://en.wikipedia.org/wiki/Leo_Breiman
https://en.wikipedia.org/wiki/Adele_Cutler
https://en.wikipedia.org/wiki/Trademark
https://en.wikipedia.org/w/index.php?title=Random_forest&action=edit
https://en.wikipedia.org/wiki/Minitab
https://en.wikipedia.org/wiki/Minitab
https://en.wikipedia.org/wiki/Bootstrap_aggregating
https://en.wikipedia.org/wiki/Donald_Geman

16. Machine Learning

Figure 16.7.: Random forests or random decision forests is an ensemble learning method
for classification, regression and other tasks that operates by constructing a
multitude of decision trees at training time.

199

17. Machine Learning 2

17.1. Overview

In this chapter, we focus on practical aspects of machine learning. The goal is to provide a
hands-on introduction to the application of machine learning techniques to real-world data.
While the theoretical foundations of machine learning are important, the ability to apply
these techniques to solve practical problems is equally crucial. In this chapter, we will use
the mlr3 package in R to build and evaluate machine learning models for classification and
regression tasks.

We will use three examples to illustrate the machine learning workflow:

1. Cancer types classification: We will classify different types of cancer based on
gene expression data.

2. Age prediction from DNA methylation: We will predict the chronological age
of individuals based on DNA methylation patterns.

3. Gene expression prediction: We will predict gene expression levels based on
histone modification data.

We’ll be applying knn, decision trees, and random forests, linear regression, and penalized
regression models to these datasets.

The mlr3 R package is a modern, object-oriented machine learning framework in R that
builds on the success of its predecessor, the mlr package. It provides a flexible and ex-
tensible platform for handling common machine learning tasks such as data preprocessing,
model training, hyperparameter tuning, and model evaluation Figure 17.1. The pack-
age is designed to guide and standardize the process of using complex machine learning
pipelines.

17.1.1. Key features of mlr3

• Task abstraction mlr3 encapsulates different types of learning problems like classifi-
cation, regression, and survival analysis into “Task” objects, making it easier to

200

17. Machine Learning 2

Figure 17.1.: The mlr3 ecosystem.

201

17. Machine Learning 2

handle various learning scenarios. Examples of tasks include classification tasks,
regression tasks, and survival tasks.

• Modular design The package follows a modular design, allowing users to quickly
swap out different components such as learners (algorithms), measures (perfor-
mance metrics), and resampling strategies. Examples of learners include linear
regression, logistic regression, and random forests. Examples of measures include
accuracy, precision, recall, and F1 score. Examples of resampling strategies in-
clude cross-validation, bootstrapping, and holdout validation.

• Extensibility Users can extend the functionality of mlr3 by adding custom compo-
nents like learners, measures, and preprocessing steps via the R6 object-oriented
system.

• Preprocessing mlr3 provides a flexible way to preprocess data using “PipeOps”
(pipeline operations), allowing users to create reusable preprocessing pipelines.

• Tuning and model selection mlr3 supports hyperparameter tuning and model selec-
tion using various search strategies like grid search, random search, and Bayesian
optimization.

• Parallelization The package allows for parallelization of model training and evalua-
tion, making it suitable for large-scale machine learning tasks.

• Benchmarking mlr3 facilitates benchmarking of multiple algorithms on multiple
tasks, simplifying the process of comparing and selecting the best models.

You can find more information, including tutorials and examples, on the official mlr3
GitHub repository1 and the mlr3 book2.

17.2. The mlr3 workflow

The mlr3 package is designed to simplify the process of creating and deploying complex
machine learning pipelines. The package follows a modular design, which means that users
can quickly swap out different components such as learners (algorithms), measures (per-
formance metrics), and resampling strategies. The package also supports parallelization of
model training and evaluation, making it suitable for large-scale machine learning tasks.

The following sections describe each of these steps in detail.

1https://github.com/mlr-org/mlr3
2https://mlr3book.mlr-org.com/

202

https://github.com/mlr-org/mlr3
https://mlr3book.mlr-org.com/

17. Machine Learning 2

Figure 17.2.: The simplified workflow of a machine learning pipeline using mlr3.

203

17. Machine Learning 2

17.2.1. The machine learning Task

Imagine you want to teach a computer how to make predictions or decisions, similar to
how you might teach a student. To do this, you need to clearly define what you want the
computer to learn and work on. This is called defining a “task.” Let’s break down what
this involves and why it’s important.

17.2.1.1. Step 1: Understand the Problem

First, think about what problem you want to solve or what question you want the computer
to answer. For example: - Do you want to predict the weather for tomorrow? - Are you
trying to figure out if an email is spam or not? - Do you want to know how much a house
might sell for?

These questions define your task type. In machine learning, there are several common
task types:

• Classification: Deciding which category something belongs to (e.g., spam or not
spam).

• Regression: Predicting a number (e.g., the price of a house).
• Clustering: Grouping similar items together (e.g., customer segmentation).

17.2.1.2. Step 2: Choose Your Data

Next, you need data that is related to your problem. Think of data as the information or
examples you’ll use to teach the computer. For instance, if your task is to predict house
prices, your data might include:

• The size of the house
• The number of bedrooms
• The location of the house
• The age of the house

These pieces of information are called features. Features are the input that the computer
uses to make predictions.

17.2.1.3. Step 3: Define the Target

Along with features, you need to define the target. The target is what you want to predict
or decide. In the house price example, the target would be the actual price of the house.

204

17. Machine Learning 2

17.2.1.4. Step 4: Create the Task

Now that you have your problem, data, and target, you can create the task. In mlr3, a
task brings together the type of problem (task type), the features (input data), and the
target (what you want to predict).

Here’s a simple summary:

1. Task Type: What kind of problem are you solving? (e.g., classification, regression)
2. Features: What information do you have to make the prediction? (e.g., size, loca-

tion)
3. Target: What are you trying to predict? (e.g., house price)

By clearly defining these elements, you set a solid foundation for the machine learning
process. This helps ensure that the computer can learn effectively and make accurate
predictions.

17.2.1.5. mlr3 and Tasks

The mlr3 package uses the concept of “Tasks” to encapsulate different types of learning
problems like classification, regression, and survival analysis. A Task contains the data (fea-
tures and target variable) and additional metadata to define the machine learning problem.
For example, in a classification task, the target variable is a label (stored as a character or
factor), while in a regression task, the target variable is a numeric quantity (stored as an
integer or numeric).

There are a number of Task Types that are supported by mlr3. To create a task from a
data.frame(), data.table() or Matrix(), you first need to select the right task type:

• Classification Task: The target is a label (stored as character or factor) with
only relatively few distinct values → TaskClassif.

• Regression Task: The target is a numeric quantity (stored as integer or numeric)
→ TaskRegr.

• Survival Task: The target is the (right-censored) time to an event. More censor-
ing types are currently in development → mlr3proba::TaskSurv in add-on package
mlr3proba.

• Density Task: An unsupervised task to estimate the density → mlr3proba::TaskDens
in add-on package mlr3proba.

205

https://mlr3book.mlr-org.com/02-basics-tasks.html#tasks-types
https://www.rdocumentation.org/packages/base/topics/data.frame
https://www.rdocumentation.org/packages/data.table/topics/data.table-package
https://www.rdocumentation.org/packages/Matrix/topics/Matrix
https://mlr3.mlr-org.com/reference/TaskClassif.html
https://mlr3.mlr-org.com/reference/TaskRegr.html
https://mlr3proba.mlr-org.com/reference/TaskSurv.html
https://mlr3proba.mlr-org.com/
https://mlr3proba.mlr-org.com/reference/TaskDens.html
https://mlr3proba.mlr-org.com/

17. Machine Learning 2

• Cluster Task: An unsupervised task type; there is no target and the aim is to
identify similar groups within the feature space → mlr3cluster::TaskClust in add-
on package mlr3cluster.

• Spatial Task: Observations in the task have spatio-temporal information (e.g. coor-
dinates) → mlr3spatiotempcv::TaskRegrST or mlr3spatiotempcv::TaskClassifST
in add-on package mlr3spatiotempcv.

• Ordinal Regression Task: The target is ordinal → TaskOrdinal in add-on package
mlr3ordinal (still in development).

17.2.2. The “Learner” in Machine Learning

After you’ve defined your task, the next step in teaching a computer to make predictions
or decisions is to choose a “learner.” Let’s explore what a learner is and how it fits into the
mlr3 package.

17.2.2.1. What is a “Learner”?

Think of a learner as the method or tool that the computer uses to learn from the data.
Another common name for a “learner” is a “model.” It’s similar to choosing a tutor or a
teacher for a student. Different learners have different ways of understanding and processing
information. For example:

• Some learners might be great at recognizing patterns in data, like a tutor who is
excellent at spotting trends.

• Others might be good at making decisions based on rules, like a tutor who uses
step-by-step logic.

In machine learning, there are many types of learners, each with its own strengths and
weaknesses. Here are a few examples:

• Decision Trees: These learners make decisions by asking a series of questions,
like “Is the house larger than 1000 square feet?” and “Does it have more than 3
bedrooms?”

• k-Nearest Neighbors: These learners make predictions based on the similarity of
new data points to existing data points.

• Linear Regression: This learner tries to fit a straight line through the data points
to make predictions about numbers.

• Random Forests: These are like a group of decision trees working together to make
more accurate predictions.

206

https://mlr3cluster.mlr-org.com/reference/TaskClust.html
https://mlr3cluster.mlr-org.com/
https://mlr3spatiotempcv.mlr-org.com/reference/TaskRegrST.html
https://mlr3spatiotempcv.mlr-org.com/reference/TaskClassifST.html
https://mlr3spatiotempcv.mlr-org.com/
https://github.com/mlr-org/mlr3ordinal

17. Machine Learning 2

• Support Vector Machines: These learners find the best boundary that separates
different categories in the data.

17.2.2.2. Choosing the Right Learner

Selecting the right learner is crucial because different learners work better for different
types of tasks and data. For example:

• If your task is to classify emails as spam or not spam, a decision tree or a support
vector machine might work well.

• If you’re predicting house prices, linear regression or random forests could be good
choices.

The goal is to find a learner that can understand the patterns in your data and make
accurate predictions. This is where the mlr3 package comes in handy. It provides a wide
range of learners that you can choose from, making it easier to experiment and find the
best learner for your task.

17.2.2.3. Learners in mlr3

In the mlr3 package, learners are pre-built tools that you can easily use for your tasks.
Here’s how it works:

1. Select a Learner: mlr3 provides a variety of learners to choose from, like decision
trees, linear regression, and more.

2. Train the Learner: Once you’ve selected a learner, you provide it with your task
(the problem, data, and target). The learner uses this information to learn and make
predictions.

3. Evaluate and Improve: After training, you can test how well the learner performs
and make adjustments if needed, such as trying a different learner or fine-tuning the
current one.

17.2.2.4. mlr3 and Learners

Objects of class Learner provide a unified interface to many popular machine learning
algorithms in R. They consist of methods to train and predict a model for a Task and
provide meta-information about the learners, such as the hyperparameters (which control
the behavior of the learner) you can set.

207

https://mlr3.mlr-org.com/reference/Learner.html
https://mlr3.mlr-org.com/reference/Task.html

17. Machine Learning 2

The base class of each learner is Learner, specialized for regression as LearnerRegr
and for classification as LearnerClassif. Other types of learners, provided by exten-
sion packages, also inherit from the Learner base class, e.g. mlr3proba::LearnerSurv or
mlr3cluster::LearnerClust.

All Learners work in a two-stage procedure:

• Training stage: The training data (features and target) is passed to the Learner’s
$train() function which trains and stores a model, i.e. the relationship of the target
and features.

• Predict stage: The new data, usually a different slice of the original data than used
for training, is passed to the $predict() method of the Learner. The model trained
in the first step is used to predict the missing target, e.g. labels for classification
problems or the numerical value for regression problems.

There are a number of predefined learners. The mlr3 package ships with the following set of
classification and regression learners. We deliberately keep this small to avoid unnecessary
dependencies:

• classif.featureless: Simple baseline classification learner. The default is to al-
ways predict the label that is most frequent in the training set. While this is not
very useful by itself, it can be used as a “fallback learner” to make predictions in case
another, more sophisticated, learner failed for some reason.

• regr.featureless: Simple baseline regression learner. The default is to always
predict the mean of the target in training set. Similar to mlr_learners_-
classif.featureless, it makes for a good “fallback learner”

• classif.rpart: Single classification tree from package rpart.
• regr.rpart: Single regression tree from package rpart.

This set of baseline learners is usually insufficient for a real data analysis. Thus, we have
cherry-picked implementations of the most popular machine learning method and collected
them in the mlr3learners package:

• Linear (regr.lm) and logistic (classif.log_reg) regression
• Penalized Generalized Linear Models (regr.glmnet, classif.glmnet), possibly with

built-in optimization of the penalization parameter (regr.cv_glmnet, classif.cv_-
glmnet)

• (Kernelized) k-Nearest Neighbors regression (regr.kknn) and classification
(classif.kknn).

• Kriging / Gaussian Process Regression (regr.km)
• Linear (classif.lda) and Quadratic (classif.qda) Discriminant Analysis
• Naive Bayes Classification (classif.naive_bayes)
• Support-Vector machines (regr.svm, classif.svm)

208

https://mlr3.mlr-org.com/reference/Learner.html
https://mlr3.mlr-org.com/reference/LearnerRegr.html
https://mlr3.mlr-org.com/reference/LearnerClassif.html
https://mlr3.mlr-org.com/reference/Learner.html
https://mlr3proba.mlr-org.com/reference/LearnerSurv.html
https://mlr3cluster.mlr-org.com/reference/LearnerClust.html
https://mlr3book.mlr-org.com/02-basics-learners.html#predefined-learners
https://mlr3.mlr-org.com/
https://mlr3.mlr-org.com/reference/mlr_learners_classif.featureless.html
https://mlr3book.mlr-org.com/fallback-learners
https://mlr3.mlr-org.com/reference/mlr_learners_regr.featureless.html
https://mlr3.mlr-org.com/reference/mlr_learners_classif.featureless.html
https://mlr3.mlr-org.com/reference/mlr_learners_classif.featureless.html
https://mlr3book.mlr-org.com/fallback-learners
https://mlr3.mlr-org.com/reference/mlr_learners_classif.rpart.html
https://cran.r-project.org/package=rpart
https://mlr3.mlr-org.com/reference/mlr_learners_regr.rpart.html
https://cran.r-project.org/package=rpart
https://mlr3learners.mlr-org.com/
https://mlr3learners.mlr-org.com/reference/mlr_learners_regr.lm.html
https://mlr3learners.mlr-org.com/reference/mlr_learners_classif.log_reg.html
https://mlr3learners.mlr-org.com/reference/mlr_learners_regr.glmnet.html
https://mlr3learners.mlr-org.com/reference/mlr_learners_classif.glmnet.html
https://mlr3learners.mlr-org.com/reference/mlr_learners_regr.cv_glmnet.html
https://mlr3learners.mlr-org.com/reference/mlr_learners_classif.cv_glmnet.html
https://mlr3learners.mlr-org.com/reference/mlr_learners_classif.cv_glmnet.html
https://mlr3learners.mlr-org.com/reference/mlr_learners_regr.kknn.html
https://mlr3learners.mlr-org.com/reference/mlr_learners_classif.kknn.html
https://mlr3learners.mlr-org.com/reference/mlr_learners_regr.km.html
https://mlr3learners.mlr-org.com/reference/mlr_learners_classif.lda.html
https://mlr3learners.mlr-org.com/reference/mlr_learners_classif.qda.html
https://mlr3learners.mlr-org.com/reference/mlr_learners_classif.naive_bayes.html
https://mlr3learners.mlr-org.com/reference/mlr_learners_regr.svm.html
https://mlr3learners.mlr-org.com/reference/mlr_learners_classif.svm.html

17. Machine Learning 2

Figure 17.3.: Two stages of a learner. Top: data (features and a target) are passed to an
(untrained) learner. Bottom: new data are passed to the trained model which
makes predictions for the ‘missing’ target column.

209

17. Machine Learning 2

• Gradient Boosting (regr.xgboost, classif.xgboost)
• Random Forests for regression and classification (regr.ranger, classif.ranger)

More machine learning methods and alternative implementations are collected in the
mlr3extralearners repository.

17.3. Setup

library(mlr3verse)
library(GEOquery)
library(mlr3learners) # for knn
library(ranger) # for randomforest
set.seed(789)

17.4. Example: Cancer types

In this exercise, we will be classifying cancer types based on gene expression data. The
data we are going to access are from Brouwer-Visser et al. (2018).

The data are from the Gene Expression Omnibus (GEO) database, a public repository of
functional genomics data. The data are from a study that aimed to identify gene expression
signatures that can distinguish between different types of cancer. The data include gene
expression profiles from patients with different types of cancer. The goal is to build a
machine learning model that can predict the cancer type based on the gene expression
data.

17.4.1. Understanding the Problem

Before we start building a machine learning model, it’s important to understand the prob-
lem we are trying to solve. Here are some key questions to consider:

• What are the features?
• What is the target variable?
• What type of machine learning task is this (classification, regression, clustering)?
• What is the goal of the analysis?

210

https://mlr3learners.mlr-org.com/reference/mlr_learners_regr.xgboost.html
https://mlr3learners.mlr-org.com/reference/mlr_learners_classif.xgboost.html
https://mlr3learners.mlr-org.com/reference/mlr_learners_regr.ranger.html
https://mlr3learners.mlr-org.com/reference/mlr_learners_classif.ranger.html
https://github.com/mlr-org/mlr3extralearners/

17. Machine Learning 2

17.4.2. Data Preparation

Use the GEOquery package to fetch data about GSE103512.

library(GEOquery)
gse = getGEO("GSE103512")[[1]]

The first step, a detail, is to convert from the older Bioconductor data structure (GEOquery
was written in 2007), the ExpressionSet, to the newer SummarizedExperiment.

library(SummarizedExperiment)
se = as(gse, "SummarizedExperiment")

Examine two variables of interest, cancer type and tumor/normal status.

with(colData(se),table(`cancer.type.ch1`,`normal.ch1`))

normal.ch1
cancer.type.ch1 no yes

BC 65 10
CRC 57 12
NSCLC 60 9
PCA 60 7

Before embarking on a machine learning analysis, we need to make sure that we understand
the data. Things like missing values, outliers, and other problems can cause problems for
machine learning algorithms.

In R, plotting, summaries, and other exploratory data analysis tools are available. PCA
analysis, clustering, and other methods can also be used to understand the data. It is
worth spending time on this step, as it can save time later.

17.4.3. Feature selection and data cleaning

While we could use all genes in the analysis, we will select the most informative genes using
the variance of gene expression across samples. Other methods for feature selection are
available, including those based on correlation with the outcome variable.

211

https://bioconductor.org/packages/GEOquery
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103512

17. Machine Learning 2

Feature selection

Feature selection should be done on the training data only, not the test data to avoid
overfitting. The test data should be used only for evaluation. In other words, the test
data should be “unseen” by the model until the final evaluation.

Remember that the apply function applies a function to each row or column of a matrix.
Here, we apply the sd function to each row of the expression matrix to get a vector of
stan

sds = apply(assay(se, 'exprs'),1,sd)
filter out normal tissues
se_small = se[order(sds,decreasing = TRUE)[1:200],

colData(se)$characteristics_ch1.1=='normal: no']
remove genes with no gene symbol
se_small = se_small[rowData(se_small)$Gene.Symbol!='',]

To make the data easier to work with, we will use the opportunity to use one of the rowData
columns as the rownames of the data frame. The make.names function is used to make
sure that the rownames are valid R variable names and unique.

convert to matrix for later use
dat = assay(se_small, 'exprs')
rownames(dat) = make.names(rowData(se_small)$Gene.Symbol)

We also need to transpose the data so that the rows are the samples and the columns are
the features in order to use the data with mlr3.

feat_dat = t(dat)
tumor = data.frame(tumor_type = colData(se_small)$cancer.type.ch1, feat_dat)

This is another good time to check the data. Make sure that the data is in the format that
you expect. Check the dimensions, the column names, and the data types.

17.4.4. Creating the “task”

The first step in using mlr3 is to create a task. A task is a data set with a target variable.
In this case, the target variable is the cancer type. The mlr3 package provides a function

212

https://mlr3book.mlr-org.com/02-basics-tasks.html

17. Machine Learning 2

to convert a data frame into a task. These tasks can be used with any machine learning
algorithm in mlr3.

This is a classification task, so we will use the as_task_classif function to create the
task. The classification task requires a target variable that is categorical.

library(mlr3)
tumor$tumor_type = as.factor(tumor$tumor_type)
task = as_task_classif(tumor,target='tumor_type')

17.4.5. Splitting the data

Here, we randomly divide the data into 2/3 training data and 1/3 test data. This is a
common split, but other splits can be used. The training data is used to train the model,
and the test data is used to evaluate the trained model.

set.seed(7)
train_set = sample(task$row_ids, 0.67 * task$nrow)
test_set = setdiff(task$row_ids, train_set)

Important

Training and testing on the same data is a common mistake. We want to test the
model on data that it has not seen before. This is the only way to know if the model
is overfitting and to get an accurate estimate of the model’s performance.

In the next sections, we will train and evaluate three different models on the data: k-
nearest-neighbor, classification tree, and random forest. Remember that the goal is to
predict the cancer type based on the gene expression data. The mlr3 package uses the
concept of “learners” to encapsulate different machine learning algorithms.

17.4.6. Example learners

17.4.6.1. K-nearest-neighbor

The first model we will use is the k-nearest-neighbor model. This model is based on the
idea that similar samples have similar outcomes. The number of neighbors to use is a
parameter that can be tuned. We’ll use the default value of 7, but you can try other values
to see how they affect the results. In fact, mlr3 provides the ability to tune parameters
automatically, but we won’t cover that here.

213

17. Machine Learning 2

17.4.6.1.1. Create the learner

In mlr3, the machine learning algorithms are called learners. To create a learner, we use
the lrn function. The lrn function takes the name of the learner as an argument. The
lrn function also takes other arguments that are specific to the learner. In this case, we
will use the default values for the arguments.

library(mlr3learners)
learner = lrn("classif.kknn")

You can get a list of all the learners available in mlr3 by using the lrn() function without
any arguments.

lrn()

<DictionaryLearner> with 49 stored values
Keys: classif.cv_glmnet, classif.debug, classif.featureless,
classif.glmnet, classif.kknn, classif.lda, classif.log_reg,
classif.multinom, classif.naive_bayes, classif.nnet, classif.qda,
classif.ranger, classif.rpart, classif.svm, classif.xgboost,
clust.agnes, clust.ap, clust.cmeans, clust.cobweb, clust.dbscan,
clust.dbscan_fpc, clust.diana, clust.em, clust.fanny,
clust.featureless, clust.ff, clust.hclust, clust.hdbscan,
clust.kkmeans, clust.kmeans, clust.MBatchKMeans, clust.mclust,
clust.meanshift, clust.optics, clust.pam, clust.SimpleKMeans,
clust.xmeans, regr.cv_glmnet, regr.debug, regr.featureless,
regr.glmnet, regr.kknn, regr.km, regr.lm, regr.nnet, regr.ranger,
regr.rpart, regr.svm, regr.xgboost

17.4.6.1.2. Train

To train the model, we use the train function. The train function takes the task and the
row ids of the training data as arguments.

learner$train(task, row_ids = train_set)

Here, we can look at the trained model:

214

17. Machine Learning 2

output is large, so do this on your own
learner$model

17.4.6.1.3. Predict

Lets use our trained model works to predict the classes of the training data. Of course,
we already know the classes of the training data, but this is a good way to check that the
model is working as expected. It also gives us a measure of performance on the training
data that we can compare to the test data to look for overfitting.

pred_train = learner$predict(task, row_ids=train_set)

And check on the test data:

pred_test = learner$predict(task, row_ids=test_set)

17.4.6.1.4. Assess

In this section, we can look at the accuracy and performance of our model on the training
data and the test data. We can also look at the confusion matrix to see which classes are
being confused with each other.

pred_train$confusion

truth
response BC CRC NSCLC PCA

BC 42 0 0 0
CRC 0 40 0 0
NSCLC 1 0 44 0
PCA 0 0 0 35

This is a multi-class confusion matrix. The rows are the true classes and the columns
are the predicted classes. The diagonal shows the number of samples that were correctly
classified. The off-diagonal elements show the number of samples that were misclassified.

We can also look at the accuracy of the model on the training data and the test data.
The accuracy is the number of correctly classified samples divided by the total number of
samples.

215

17. Machine Learning 2

measures = msrs(c('classif.acc'))
pred_train$score(measures)

classif.acc
0.9938272

pred_test$confusion

truth
response BC CRC NSCLC PCA

BC 22 0 0 0
CRC 0 17 1 0
NSCLC 0 0 15 0
PCA 0 0 0 25

pred_test$score(measures)

classif.acc
0.9875

Compare the accuracy on the training data to the accuracy on the test data. Do you see
any evidence of overfitting?

17.4.6.2. Classification tree

We are going to use a classification tree to classify the data. A classification tree is a
series of yes/no questions that are used to classify the data. The questions are based on
the features in the data. The classification tree is built by finding the feature that best
separates the data into the different classes. Then, the data is split based on the value
of that feature. The process is repeated until the data is completely separated into the
different classes.

216

17. Machine Learning 2

17.4.6.2.1. Train

in this case, we want to keep the model
so we can look at it later
learner = lrn("classif.rpart", keep_model = TRUE)

learner$train(task, row_ids = train_set)

We can take a look at the model.

learner$model

n= 162

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 162 118 NSCLC (0.26543210 0.24691358 0.27160494 0.21604938)
2) CDHR5>=5.101625 40 0 CRC (0.00000000 1.00000000 0.00000000 0.00000000) *
3) CDHR5< 5.101625 122 78 NSCLC (0.35245902 0.00000000 0.36065574 0.28688525)
6) ACPP< 6.088431 87 43 NSCLC (0.49425287 0.00000000 0.50574713 0.00000000)
12) GATA3>=4.697803 41 1 BC (0.97560976 0.00000000 0.02439024 0.00000000) *
13) GATA3< 4.697803 46 3 NSCLC (0.06521739 0.00000000 0.93478261 0.00000000) *

7) ACPP>=6.088431 35 0 PCA (0.00000000 0.00000000 0.00000000 1.00000000) *

Decision trees are easy to visualize if they are small. Here, we can see that the tree is very
simple, with only two splits.

library(mlr3viz)
library(ggparty)

Loading required package: ggplot2

Loading required package: partykit

Loading required package: grid

Loading required package: libcoin

217

17. Machine Learning 2

Loading required package: mvtnorm

Attaching package: 'partykit'

The following object is masked from 'package:SummarizedExperiment':

width

The following object is masked from 'package:GenomicRanges':

width

The following object is masked from 'package:IRanges':

width

The following object is masked from 'package:S4Vectors':

width

The following object is masked from 'package:BiocGenerics':

width

autoplot(learner, type='ggparty')

218

17. Machine Learning 2

≥ 5.1016253725

< 5.1016253725

< 6.0884307235

≥ 4.69780339< 4.69780339

≥ 6.0884307235

CDHR5

ACPP

GATA3

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

tumor_type

co
un

t

n=40 n=41 n=46 n=35

17.4.6.2.2. Predict

Now that we have trained the model on the training data, we can use it to predict the
classes of the training data and the test data. The $predict method takes a task and
produces a prediction based on the trained model, in this case, called learner.

pred_train = learner$predict(task, row_ids=train_set)

Remember that we split the data into training and test sets. We can use the trained model
to predict the classes of the test data. Since the test data was not used to train the model, it
is not “cheating” like what we just did where we did the prediction on the training data.

pred_test = learner$predict(task, row_ids=test_set)

17.4.6.2.3. Assess

For classification tasks, we often look at a confusion matrix of the truth vs the predicted
classes for the samples.

219

17. Machine Learning 2

Important

Assessing the performance of a model should always be reported from assessment
on an independent test set.

pred_train$confusion

truth
response BC CRC NSCLC PCA

BC 40 0 1 0
CRC 0 40 0 0
NSCLC 3 0 43 0
PCA 0 0 0 35

• What does this confusion matrix tell you?

We can also ask for several “measures” of the performance of the model. Here, we ask for
the accuracy of the model. To get a complete list of measures, use msr().

measures = msrs(c('classif.acc'))
pred_train$score(measures)

classif.acc
0.9753086

• How does the accuracy compare to the confusion matrix?
• How does this accuracy compare to the accuracy of the k-nearest-neighbor model?
• How about the decision tree model?

pred_test$confusion

truth
response BC CRC NSCLC PCA

BC 20 0 1 0
CRC 0 17 3 0
NSCLC 2 0 12 0
PCA 0 0 0 25

220

17. Machine Learning 2

pred_test$score(measures)

classif.acc
0.925

• What does the confusion matrix in the test set tell you?
• How do the assessments of the test and training sets differ?

Overfitting

When the assessment of the test set is worse than the evaluation of the training set,
the model may be overfit. How to address overfitting varies by model type, but it is
a sign that you should pay attention to model selection and parameters.

17.4.6.3. RandomForest

learner = lrn("classif.ranger", importance = "impurity")

17.4.6.3.1. Train

learner$train(task, row_ids = train_set)

Again, you can look at the model that was trained.

learner$model

Ranger result

Call:
ranger::ranger(dependent.variable.name = task$target_names, data = task$data(), probability = self$predict_type == "prob", case.weights = task$weights$weight, num.threads = 1L, importance = "impurity")

Type: Classification
Number of trees: 500
Sample size: 162
Number of independent variables: 192
Mtry: 13

221

17. Machine Learning 2

Target node size: 1
Variable importance mode: impurity
Splitrule: gini
OOB prediction error: 0.62 %

For more details, the mlr3 random forest approach is based ont he ranger package. You
can look at the ranger documentation.

• What is the OOB error in the output?

Random forests are a collection of decision trees. Since predictors enter the trees in a
random order, the trees are different from each other. The random forest procedure gives
us a measure of the “importance” of each variable.

head(learner$importance(), 15)

CDHR5 TRPS1.1 FABP1 EPS8L3 KRT20 EFHD1 LGALS4 TRPS1
4.791870 3.918063 3.692649 3.651422 3.340382 3.314491 2.952969 2.926175

SFTPB SFTPB.1 GATA3 GATA3.1 TMPRSS2 MUC12 POF1B
2.805811 2.681004 2.344603 2.271845 2.248734 2.207347 1.806906

More “important” variables are those that are more often used in the trees. Are the most
important variables the same as the ones that were important in the decision tree?

If you are interested, look up a few of the important variables in the model to see if they
make biological sense.

17.4.6.3.2. Predict

Again, we can use the trained model to predict the classes of the training data and the test
data.

pred_train = learner$predict(task, row_ids=train_set)

pred_test = learner$predict(task, row_ids=test_set)

17.4.6.3.3. Assess

222

17. Machine Learning 2

pred_train$confusion

truth
response BC CRC NSCLC PCA

BC 43 0 0 0
CRC 0 40 0 0
NSCLC 0 0 44 0
PCA 0 0 0 35

measures = msrs(c('classif.acc'))
pred_train$score(measures)

classif.acc
1

pred_test$confusion

truth
response BC CRC NSCLC PCA

BC 22 0 0 0
CRC 0 17 0 0
NSCLC 0 0 16 0
PCA 0 0 0 25

pred_test$score(measures)

classif.acc
1

17.5. Example Predicting age from DNA methylation

We will be building a regression model for chronological age prediction, based on DNA
methylation. This is based on the work of Jana Naue et al. 2017, in which biomarkers are
examined to predict the chronological age of humans by analyzing the DNA methylation
patterns. Different machine learning algorithms are used in this study to make an age
prediction.

223

https://www.sciencedirect.com/science/article/pii/S1872497317301643?via%3Dihub

17. Machine Learning 2

It has been recognized that within each individual, the level of DNA methylation changes
with age. This knowledge is used to select useful biomarkers from DNA methylation
datasets. The CpG sites with the highest correlation to age are selected as the biomarkers
(and therefore features for building a regression model). In this tutorial, specific biomarkers
are analyzed by machine learning algorithms to create an age prediction model.

The data are taken from this tutorial.

library(data.table)
meth_age = rbind(

fread('https://zenodo.org/record/2545213/files/test_rows_labels.csv'),
fread('https://zenodo.org/record/2545213/files/train_rows.csv')

)

Let’s take a quick look at the data.

head(meth_age)

RPA2_3 ZYG11A_4 F5_2 HOXC4_1 NKIRAS2_2 MEIS1_1 SAMD10_2 GRM2_9 TRIM59_5
<num> <num> <num> <num> <num> <num> <num> <num> <num>

1: 65.96 18.08 41.57 55.46 30.69 63.42 40.86 68.88 44.32
2: 66.83 20.27 40.55 49.67 29.53 30.47 37.73 53.30 50.09
3: 50.30 11.74 40.17 33.85 23.39 58.83 38.84 35.08 35.90
4: 65.54 15.56 33.56 36.79 20.23 56.39 41.75 50.37 41.46
5: 59.01 14.38 41.95 30.30 24.99 54.40 37.38 30.35 31.28
6: 81.30 14.68 35.91 50.20 26.57 32.37 32.30 55.19 42.21

LDB2_3 ELOVL2_6 DDO_1 KLF14_2 Age
<num> <num> <num> <num> <int>

1: 56.17 62.29 40.99 2.30 40
2: 58.40 61.10 49.73 1.07 44
3: 58.81 50.38 63.03 0.95 28
4: 58.05 50.58 62.13 1.99 37
5: 65.80 48.74 41.88 0.90 24
6: 70.15 61.36 33.62 1.87 43

As before, we create the task object, but this time we use as_task_regr() to create a
regression task.

• Why is this a regression task?

224

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3174260/
https://en.wikipedia.org/wiki/CpG_site
https://training.galaxyproject.org/training-material/topics/statistics/tutorials/regression_machinelearning/tutorial.html

17. Machine Learning 2

task = as_task_regr(meth_age,target = 'Age')

set.seed(7)
train_set = sample(task$row_ids, 0.67 * task$nrow)
test_set = setdiff(task$row_ids, train_set)

17.5.1. Example learners

17.5.1.1. Linear regression

We will start with a simple linear regression model.

learner = lrn("regr.lm")

17.5.1.1.1. Train

learner$train(task, row_ids = train_set)

When you train a linear regression model, we can evaluate some of the diagnostic plots to
see if the model is appropriate (Figure 17.4).

par(mfrow=c(2,2))
plot(learner$model)

225

17. Machine Learning 2

20 30 40 50 60 70

−
10

Fitted values

R
es

id
ua

ls Residuals vs Fitted
8272

73

−3 −2 −1 0 1 2 3

−
2

Theoretical QuantilesS
ta

nd
ar

di
ze

d
re

si
du

al
s

Q−Q Residuals
82

73

72

20 30 40 50 60 70

0.
0

Fitted valuesS
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale−Location
82 7372

0.00 0.10 0.20

−
2

LeverageS
ta

nd
ar

di
ze

d
re

si
du

al
s

Cook's distance
0.5

Residuals vs Leverage
82

73

48

Figure 17.4.: Regression diagnostic plots. The top left plot shows the residuals vs. fitted
values. The top right plot shows the normal Q-Q plot. The bottom left
plot shows the scale-location plot. The bottom right plot shows the residuals
vs. leverage.

17.5.1.1.2. Predict

pred_train = learner$predict(task, row_ids=train_set)

pred_test = learner$predict(task, row_ids=test_set)

17.5.1.1.3. Assess

pred_train

<PredictionRegr> for 209 observations:
row_ids truth response

298 29 31.40565
103 58 56.26019
194 53 48.96480

226

17. Machine Learning 2

312 48 52.61195
246 66 67.66312
238 38 39.38414

We can plot the relationship between the truth and response, or predicted value to see
visually how our model performs.

library(ggplot2)
ggplot(pred_train,aes(x=truth, y=response)) +

geom_point() +
geom_smooth(method='lm')

`geom_smooth()` using formula = 'y ~ x'

20

30

40

50

60

70

20 30 40 50 60 70
truth

re
sp

on
se

We can use the r-squared of the fit to roughly compare two models.

measures = msrs(c('regr.rsq'))
pred_train$score(measures)

227

17. Machine Learning 2

regr.rsq
0.9376672

pred_test

<PredictionRegr> for 103 observations:
row_ids truth response

4 37 37.64301
5 24 28.34777
7 34 33.22419

306 42 41.65864
307 63 58.68486
309 68 70.41987

pred_test$score(measures)

regr.rsq
0.9363526

17.5.1.2. Regression tree

learner = lrn("regr.rpart", keep_model = TRUE)

17.5.1.2.1. Train

learner$train(task, row_ids = train_set)

learner$model

n= 209

node), split, n, deviance, yval
* denotes terminal node

1) root 209 45441.4500 43.27273

228

17. Machine Learning 2

2) ELOVL2_6< 56.675 98 5512.1220 30.24490
4) ELOVL2_6< 47.24 47 866.4255 24.23404
8) GRM2_9< 31.3 34 289.0588 22.29412 *
9) GRM2_9>=31.3 13 114.7692 29.30769 *

5) ELOVL2_6>=47.24 51 1382.6270 35.78431
10) F5_2>=39.295 35 473.1429 33.28571 *
11) F5_2< 39.295 16 213.0000 41.25000 *

3) ELOVL2_6>=56.675 111 8611.3690 54.77477
6) ELOVL2_6< 65.365 63 3101.2700 49.41270
12) KLF14_2< 3.415 37 1059.0270 46.16216 *
13) KLF14_2>=3.415 26 1094.9620 54.03846 *

7) ELOVL2_6>=65.365 48 1321.3120 61.81250 *

What is odd about using a regression tree here is that we end up with only a few discrete
estimates of age. Each “leaf” has a value.

17.5.1.2.2. Predict

pred_train = learner$predict(task, row_ids=train_set)

pred_test = learner$predict(task, row_ids=test_set)

17.5.1.2.3. Assess

pred_train

<PredictionRegr> for 209 observations:
row_ids truth response

298 29 33.28571
103 58 61.81250
194 53 46.16216

312 48 54.03846
246 66 61.81250
238 38 41.25000

We can see the effect of the discrete values much more clearly here.

229

17. Machine Learning 2

library(ggplot2)
ggplot(pred_train,aes(x=truth, y=response)) +

geom_point() +
geom_smooth(method='lm')

`geom_smooth()` using formula = 'y ~ x'

20

30

40

50

60

70

20 30 40 50 60 70
truth

re
sp

on
se

And the r-squared values for this model prediction shows quite a bit of difference from the
linear regression above.

measures = msrs(c('regr.rsq'))
pred_train$score(measures)

regr.rsq
0.8995351

pred_test

230

17. Machine Learning 2

<PredictionRegr> for 103 observations:
row_ids truth response

4 37 41.25000
5 24 33.28571
7 34 33.28571

306 42 46.16216
307 63 61.81250
309 68 61.81250

pred_test$score(measures)

regr.rsq
0.8545402

17.5.1.3. RandomForest

Randomforest is also tree-based, but unlike the single regression tree above, randomforest
is a “forest” of trees which will eliminate the discrete nature of a single tree.

learner = lrn("regr.ranger", mtry=2, min.node.size=20)

17.5.1.3.1. Train

learner$train(task, row_ids = train_set)

learner$model

Ranger result

Call:
ranger::ranger(dependent.variable.name = task$target_names, data = task$data(), case.weights = task$weights$weight, num.threads = 1L, mtry = 2L, min.node.size = 20L)

Type: Regression
Number of trees: 500
Sample size: 209
Number of independent variables: 13

231

17. Machine Learning 2

Mtry: 2
Target node size: 20
Variable importance mode: none
Splitrule: variance
OOB prediction error (MSE): 18.85364
R squared (OOB): 0.9137009

17.5.1.3.2. Predict

pred_train = learner$predict(task, row_ids=train_set)

pred_test = learner$predict(task, row_ids=test_set)

17.5.1.3.3. Assess

pred_train

<PredictionRegr> for 209 observations:
row_ids truth response

298 29 30.62154
103 58 58.05445
194 53 48.25661

312 48 51.49846
246 66 64.39315
238 38 38.18038

ggplot(pred_train,aes(x=truth, y=response)) +
geom_point() +
geom_smooth(method='lm')

`geom_smooth()` using formula = 'y ~ x'

232

17. Machine Learning 2

20

30

40

50

60

20 30 40 50 60 70
truth

re
sp

on
se

measures = msrs(c('regr.rsq'))
pred_train$score(measures)

regr.rsq
0.960961

pred_test

<PredictionRegr> for 103 observations:
row_ids truth response

4 37 37.79631
5 24 29.18371
7 34 33.26780

306 42 40.29101
307 63 58.26534
309 68 63.15481

pred_test$score(measures)

regr.rsq
0.9208394

233

17. Machine Learning 2

17.6. Example: Expression prediction from histone modification
data

In this little set of exercises, you will be using histone marks near a gene to predict its
expression (Figure 17.5).

𝑦 ℎ1 + ℎ2 + ℎ3 + ... (17.1)

Figure 17.5.: What is the combined effect of histone marks on gene expression?

The data are from a study that aimed to predict gene expression from histone modification
data. The data include gene expression levels and histone modification data for a set of
genes. The goal is to build a machine learning model that can predict gene expression
levels based on the histone modification data. The histone modification data are simply
summaries of the histone marks within the promoter, defined as the region 2kb upstream
of the transcription start site for this exercise.

We will try a couple of different approaches:

234

17. Machine Learning 2

1. Penalized regression
2. RandomForest

17.6.1. The Data

The data in this exercise were developed by Anshul Kundaje. We are not going to focus
on the details of the data collection, etc. Instead, this is

fullFeatureSet <- read.table("http://seandavi.github.io/ITR/expression-prediction/features.txt");

What are the column names of the predictor variables?

colnames(fullFeatureSet)

[1] "Control" "Dnase" "H2az" "H3k27ac" "H3k27me3" "H3k36me3"
[7] "H3k4me1" "H3k4me2" "H3k4me3" "H3k79me2" "H3k9ac" "H3k9me1"
[13] "H3k9me3" "H4k20me1"

These are going to be predictors combined into a model. Some of our learners will rely on
predictors being on a similar scale. Are our data already there?

To perform centering and scaling by column, we can convert to a matrix and then use
scale.

par(mfrow=c(1,2))
scaled_features <- scale(as.matrix(fullFeatureSet))
boxplot(fullFeatureSet, title='Original data')
boxplot(scaled_features, title='Centered and scaled data')

235

17. Machine Learning 2

Control H3k4me3

−
2

2
4

6
8

Control H3k4me3

0
5

10

Figure 17.6.: Boxplots of original and scaled data.

There is a row for each gene and a column for each histone mark and we can see that the
data are centered and scaled by column. We can also see some patterns in the data (see
Figure 17.7).

sampled_features <- fullFeatureSet[sample(nrow(scaled_features), 500),]
library(ComplexHeatmap)

==
ComplexHeatmap version 2.20.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite either one:
- Gu, Z. Complex Heatmap Visualization. iMeta 2022.
- Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional

genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
suppressPackageStartupMessages(library(ComplexHeatmap))

==

236

17. Machine Learning 2

Heatmap(sampled_features, name='histone marks', show_row_names=FALSE)

Warning: The input is a data frame-like object, convert it to a matrix.
H

3k
4m

e2

H
3k

4m
e3

H
2a

z

D
na

se

H
3k

9a
c

H
3k

27
ac

H
3k

79
m

e2

H
3k

27
m

e3

H
3k

4m
e1

H
4k

20
m

e1

C
on

tr
ol

H
3k

9m
e1

H
3k

36
m

e3

H
3k

9m
e3

histone marks

−2
0
2
4
6
8

Figure 17.7.: Heatmap of 500 randomly sampled rows of the data. Columns are histone
marks and there is a row for each gene.

Now, we can read in the associated gene expression measures that will become our “target”
for prediction.

target <- scan(url("http://seandavi.github.io/ITR/expression-prediction/target.txt"), skip=1)
make into a dataframe
exp_pred_data <- data.frame(gene_expression=target, scaled_features)

And the first few rows of the target data frame using:

head(exp_pred_data,3)

237

17. Machine Learning 2

gene_expression Control Dnase H2az
ENSG00000000419.7.49575069 6.082343 0.7452926 0.7575546 1.0728432
ENSG00000000457.8.169863093 2.989145 1.9509786 1.0216546 0.3702787
ENSG00000000938.7.27961645 -5.058894 -0.3505542 -1.4482958 -1.0390775

H3k27ac H3k27me3 H3k36me3 H3k4me1
ENSG00000000419.7.49575069 1.0950440 -0.5125312 1.1334793 0.4127984
ENSG00000000457.8.169863093 0.7142157 -0.4079244 0.8739005 1.1649282
ENSG00000000938.7.27961645 -1.0173283 1.4117293 -0.5157582 -0.5017450

H3k4me2 H3k4me3 H3k79me2 H3k9ac
ENSG00000000419.7.49575069 1.2136176 1.1202901 1.5155803 1.2468256
ENSG00000000457.8.169863093 0.6456572 0.6508561 0.7976487 0.5792891
ENSG00000000938.7.27961645 -0.1878255 -0.6560973 -1.3803974 -1.0067972

H3k9me1 H3k9me3 H4k20me1
ENSG00000000419.7.49575069 0.1426980 1.185622 1.9599992
ENSG00000000457.8.169863093 0.3630902 1.014923 -0.2695111
ENSG00000000938.7.27961645 0.6564520 -1.370871 -1.8773178

17.6.2. Create task

exp_pred_task = as_task_regr(exp_pred_data, target='gene_expression')

Partition the data into test and training sets. We will use 1
3 and 2

3 of the data for testing.

split = partition(exp_pred_task)

17.6.3. Example learners

17.6.3.1. Linear regression

learner = lrn("regr.lm")

17.6.3.1.1. Train

learner$train(exp_pred_task, split$train)

238

17. Machine Learning 2

17.6.3.1.2. Predict

pred_train = learner$predict(exp_pred_task, split$train)
pred_test = learner$predict(exp_pred_task, split$test)

17.6.3.1.3. Assess

pred_train

<PredictionRegr> for 5789 observations:
row_ids truth response

1 6.082343 5.139251
2 2.989145 2.909552
7 5.838076 4.563759

8543 9.016443 6.141272
8583 7.475697 2.543423
8618 10.049236 5.523896

plot(pred_train)

−5

0

5

10

−8 −4 0 4 8
response

tr
ut

h

239

17. Machine Learning 2

For the training data:

measures = msrs(c('regr.rsq'))
pred_train$score(measures)

regr.rsq
0.7495474

And the test data:

pred_test$score(measures)

regr.rsq
0.7526609

And the plot of the test data predictions:

plot(pred_test)

−5

0

5

10

−5 0 5
response

tr
ut

h

240

17. Machine Learning 2

17.6.3.2. Penalized regression

Imagine you want to teach a computer to predict house prices based on various features
like size, number of bedrooms, and location. You decide to use regression, which finds a
relationship between these features and the house prices. But what if your model becomes
too complicated? This is where penalized regression comes in.

17.6.3.2.1. The Problem with Overfitting

Sometimes, the model tries too hard to fit every single data point perfectly. This can make
the model very complex, like trying to draw a perfect line through a very bumpy path.
This problem is called overfitting. An overfitted model works well on the data it has seen
(training data) but performs poorly on new, unseen data (testing data).

17.6.3.2.2. Introducing Penalized Regression

Penalized regression helps prevent overfitting by adding a “penalty” to the model for being
too complex. Think of it as a way to encourage the model to be simpler and more general.
There are three common types of penalized regression:

1. Ridge Regression (L2 Penalty):

• Adds a penalty based on the size of the coefficients. It tries to keep all coefficients
small.

• If the model’s equation looks too complicated, Ridge Regression will push it
towards a simpler form by shrinking the coefficients.

• Imagine you have a rubber band that pulls the coefficients towards zero, making
the model less likely to overfit.

2. Lasso Regression (L1 Penalty):

• Adds a penalty that can shrink some coefficients all the way to zero.
• This means Lasso Regression can completely remove some features from the

model, making it simpler.
• Imagine you have a pair of scissors that can cut off the least important features,

leaving only the most important ones.

3. Elastic Net:

• Combines both Ridge and Lasso penalties. It adds penalties for both the size
and the number of coefficients.

• This method balances between shrinking coefficients and eliminating some alto-
gether, offering the benefits of both Ridge and Lasso.

241

17. Machine Learning 2

• Think of Elastic Net as using both the rubber band (Ridge) and scissors (Lasso)
to simplify the model.

With our data, the number of predictors is not huge, but we might be interested in 1)
reducing overfitting, 2) improving interpretability, or 3) both by minimizing the number
of predictors in our model without drastically affecting our prediction accuracy. Without
penalized regression, the model might come up with a very complex equation. With Ridge,
Lasso, or Elastic Net, the model simplifies this equation by either shrinking the coefficients
(Ridge), removing some of them (Lasso), or balancing both (Elastic Net).

Here’s a simple summary:

• Ridge Regression: Reduces the impact of less important features by shrinking
their coefficients.

• Lasso Regression: Can eliminate some features entirely by setting their coefficients
to zero.

• Elastic Net: Combines the effects of Ridge and Lasso, shrinking some coefficients
and eliminating others.

Using penalized regression in machine learning ensures that your model:

1. Performs Better on New Data: By avoiding overfitting, the model can make
more accurate predictions on new, unseen data.

2. Is Easier to Interpret: A simpler model with fewer features is easier to understand
and explain.

17.6.3.3. Penalized Regression with mlr3

In the mlr3 package, you can easily apply penalized regression methods to your tasks.
Here’s how:

1. Select Penalized Regression Learners: mlr3 provides learners for Ridge, Lasso,
and Elastic Net Regression.

2. Train the Learner: Use your data to train the chosen penalized regression model.
3. Evaluate and Adjust: Check how well the model performs and make adjustments

if needed.

This description explains penalized regression, including Ridge, Lasso, and Elastic Net, in
an intuitive way, highlighting their benefits and how they work, while relating them to
familiar concepts and the mlr3 package.

242

17. Machine Learning 2

Recall that we can use penalized regression to select the most important predictors from a
large set of predictors. In this case, we will use the glmnet package to perform penalized
regression, but we will use the mlr interface to glmnet to make it easier to use.

The nfolds parameter is the number of folds to use in the cross-validation procedure.

What is Cross-Validation? Cross-validation is a technique used to assess how well a model
will perform on unseen data. It involves splitting the data into multiple parts, training the
model on some of these parts, and validating it on the remaining parts. This process is
repeated several times to ensure the model’s performance is consistent.

Why Use Cross-Validation? Cross-validation helps to:

• Avoid Overfitting: By testing the model on different subsets of the data, cross-
validation helps ensure that the model does not memorize the training data but
learns to generalize from it.

• Select the Best Model Parameters: Penalized regression models, such as those trained
with glmnet, have parameters that control the strength of the penalty (e.g., lambda).
Cross-validation helps find the best values for these parameters.

When using the glmnet package, cross-validation can be performed using the cv.glmnet
function. Here’s how the process works:

1. Split the Data: The data is divided into � k folds (common choices are 5 or 10 folds).
Each fold is a subset of the data.

2. Train and Validate: The model is trained � k times. In each iteration, � − 1 k−1 folds
are used for training, and the remaining fold is used for validation. This process is
repeated until each fold has been used as the validation set exactly once.

3. Calculate Performance: The performance of the model (e.g., mean squared error for
regression) is calculated for each fold. The average performance across all folds is
computed to get an overall measure of how well the model is expected to perform on
unseen data.

4. Select the Best Parameters: The cv.glmnet function evaluates different values of the
penalty parameter (lambda). It selects the lambda value that results in the best
average performance across the folds.

In this case, we will use the cv_glmnet learner, which will automatically select the best
value of the penalization parameters. When the alpha parameter is set to 0, the model
is a Ridge regression model. When the alpha parameter is set to 1, the model is a Lasso
regression model.

243

17. Machine Learning 2

learner = lrn("regr.cv_glmnet", nfolds=10, alpha=0)

17.6.3.3.1. Train

learner$train(exp_pred_task)

measures = msrs(c('regr.rsq', 'regr.mse', 'regr.rmse'))
pred_train$score(measures)

regr.rsq regr.mse regr.rmse
0.7495474 4.8736194 2.2076275

In the case of the penalized regression, we can also look at the coefficients of the model.

coef(learner$model)

15 x 1 sparse Matrix of class "dgCMatrix"
s1

(Intercept) 0.10173828
Control -0.08042502
Dnase 0.91127090
H2az 0.33880640
H3k27ac 0.15845313
H3k27me3 -0.25171391
H3k36me3 0.72063384
H3k4me1 -0.08222957
H3k4me2 0.13101892
H3k4me3 0.38905759
H3k79me2 0.99247076
H3k9ac 0.52009300
H3k9me1 -0.09183614
H3k9me3 -0.17912878
H4k20me1 0.11235659

Note that the coefficients are all zero for the histone marks that were not selected by
the model. In this case, we can use the model not to predict new data, but to help us
understand the data.

244

17. Machine Learning 2

pred_train = learner$predict(exp_pred_task, split$train)
pred_test = learner$predict(exp_pred_task, split$test)

17.6.3.3.2. Assess

pred_train

<PredictionRegr> for 5789 observations:
row_ids truth response

1 6.082343 4.923259
2 2.989145 2.936421
7 5.838076 4.619141

8543 9.016443 5.580735
8583 7.475697 2.565638
8618 10.049236 5.226577

plot(pred_train)

−5

0

5

10

−5 0 5
response

tr
ut

h

For the training data:

245

17. Machine Learning 2

measures = msrs(c('regr.rsq'))
pred_train$score(measures)

regr.rsq
0.7422423

And the test data:

pred_test$score(measures)

regr.rsq
0.7481403

And the plot of the test data predictions:

plot(pred_test)

−5

0

5

10

−4 0 4 8
response

tr
ut

h

246

17. Machine Learning 2

Calculate the R-squared value
truth <- pred_test$truth
predicted <- pred_test$response
rss <- sum((truth - predicted)^2) # Residual sum of squares
tss <- sum((truth - mean(truth))^2) # Total sum of squares
r_squared <- 1 - (rss / tss)

247

Part V.

Bioconductor

248

18. Accessing and working with public omics
data

18.1. Background

The data we are going to access are from this paper.

Background: The tumor microenvironment is an important factor in cancer
immunotherapy response. To further understand how a tumor affects the lo-
cal immune system, we analyzed immune gene expression differences between
matching normal and tumor tissue.Methods: We analyzed public and new gene
expression data from solid cancers and isolated immune cell populations. We
also determined the correlation between CD8, FoxP3 IHC, and our gene sig-
natures.Results: We observed that regulatory T cells (Tregs) were one of the
main drivers of immune gene expression differences between normal and tu-
mor tissue. A tumor-specific CD8 signature was slightly lower in tumor tissue
compared with normal of most (12 of 16) cancers, whereas a Treg signature
was higher in tumor tissue of all cancers except liver. Clustering by Treg sig-
nature found two groups in colorectal cancer datasets. The high Treg cluster
had more samples that were consensus molecular subtype 1/4, right-sided, and
microsatellite-instable, compared with the low Treg cluster. Finally, we found
that the correlation between signature and IHC was low in our small dataset,
but samples in the high Treg cluster had significantly more CD8+ and FoxP3+
cells compared with the low Treg cluster.Conclusions: Treg gene expression is
highly indicative of the overall tumor immune environment.Impact: In compar-
ison with the consensus molecular subtype and microsatellite status, the Treg
signature identifies more colorectal tumors with high immune activation that
may benefit from cancer immunotherapy.

In this little exercise, we will:

1. Access public omics data using the GEOquery package
2. Get an opportunity to work with another SummarizedExperiment object.
3. Perform a simple unsupervised analysis to visualize these public data.

249

https://doi.org/10.1158/1055-9965.EPI-17-0461

18. Accessing and working with public omics data

18.2. GEOquery to PCA

The first step is to install the R package GEOquery. This package allows us to access data
from the Gene Expression Omnibus (GEO) database. GEO is a public repository of omics
data.

BiocManager::install("GEOquery")

GEOquery has only one commonly used function, getGEO() which takes a GEO accession
number as an argument. The GEO accession number is a unique identifier for a dataset.

Use the GEOquery package to fetch data about GSE103512.

library(GEOquery)
gse = getGEO("GSE103512")[[1]]

You might ask why we are using [[1]] at the end of the getGEO() function. The reason is
that getGEO() returns a list of GSE objects. We are only interested in the first one (and in
this case, the only one). We return a list of GSE objects because in the early days, it was
not unusual to have a single GEO accession number represent multiple datasets. While
uncommon now, we’ve kept the convention since lots of “older” data is still quite useful.

Again, a historically-derived detail, is to convert from the older Bioconductor data
structure (GEOquery was written in 2007), the ExpressionSet, to the newer
SummarizedExperiment.

library(SummarizedExperiment)
se = as(gse, "SummarizedExperiment")

Use some code to determine the answers to the following:

• What is the class of se?
• What are the dimensions of se?
• What are the dimensions of the assay slot of se?
• What are the dimensions of the colData slot of se?
• What variables are in the colData slot of se?

Examine two variables of interest, cancer type and tumor/normal status. The with function
is a convenience to allow us to access variables in a data frame by name (rather than having
to do dataframe$variable_name. Recalling that the table function is a convenient way to
summarize the counts of unique values in a vector, we can use with to access the variables
of interest and table to summarize the counts of unique values.

250

https://cran.r-project.org/
https://bioconductor.org/packages/GEOquery
https://bioconductor.org/packages/GEOquery
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103512

18. Accessing and working with public omics data

with(colData(se),table(`cancer.type.ch1`,`normal.ch1`))

normal.ch1
cancer.type.ch1 no yes

BC 65 10
CRC 57 12
NSCLC 60 9
PCA 60 7

• How many samples are there of each cancer type?
• How many samples are there of each tumor/normal status?

When performing unsupervised analysis, it is common to filter genes by variance to find
the most informative genes. It is common practice to filter genes by standard deviation or
some other measure of variability and keep the top X percent of them when performing
dimensionality reduction. There is not a single right answer to what percentage to use, so
try a few to see what happens. In the example code, I chose to use the top 500 genes by
standard deviation, but you can play with the threshold to see what happens.

Recall that the assay function is used to access the data matrix of the SummarizedExperiment
object.

Think through the code below and then run it.

sds = apply(assay(se, 'exprs'),1,sd)
dat = assay(se, 'exprs')[order(sds,decreasing = TRUE)[1:500],]

If you don’t recognize the function apply, it is a function that applies a function to each
row or column of a matrix. In this case, we are applying the sd function to each row of
the data matrix. The order function is used to sort the standard deviations in decreasing
order (when decreasing=TRUE). And the [1:500] is used to subset the data matrix to the
top 500 genes by standard deviation.

Perform PCA and prepare for plotting. We will be using ggplot2, so we need to make a
data.frame before plotting.

pca_results <- prcomp(t(dat))
pca_df = as.data.frame(pca_results$x)
pca_df$Type=factor(colData(se)[,'cancer.type.ch1'])
pca_df$Normal = factor(colData(se)[,'normal.ch1'])

251

18. Accessing and working with public omics data

Now, we are going to plot the results of the PCA, coloring the points by cancer type and
using different shapes for normal and tumor samples.

library(ggplot2)
ggplot(pca_df, aes(x=PC1,y=PC2,shape=Normal,color=Type)) +

geom_point(alpha=0.6) + theme(text=element_text(size = 18))

−20

0

20

−50 −25 0 25
PC1

P
C

2

Normal
no
yes

Type
BC
CRC
NSCLC
PCA

In this case, the x-axis is the first principal component and the y-axis is the second principal
component.

• What do you see?
• What about additional principal components?
• Bonus: Try using the GGally package to plot principal components (using the

ggpairs function).
• Bonus: Calculate the variance explained by each principal component and plot the

results.

252

19. Introduction to SummarizedExperiment

The SummarizedExperiment class is used to store rectangular matrices of experimental
results, which are commonly produced by sequencing and microarray experiments. Each
object stores observations of one or more samples, along with additional meta-data describ-
ing both the observations (features) and samples (phenotypes).

A key aspect of the SummarizedExperiment class is the coordination of the meta-data
and assays when subsetting. For example, if you want to exclude a given sample you can
do for both the meta-data and assay in one operation, which ensures the meta-data and
observed data will remain in sync. Improperly accounting for meta and observational data
has resulted in a number of incorrect results and retractions so this is a very desirable
property.

SummarizedExperiment is in many ways similar to the historical ExpressionSet, the main
distinction being that SummarizedExperiment is more flexible in it’s row information, al-
lowing both GRanges based as well as those described by arbitrary DataFrames. This makes
it ideally suited to a variety of experiments, particularly sequencing based experiments such
as RNA-Seq and ChIp-Seq.

BiocManager::install('airway')
BiocManager::install('SummarizedExperiment')

19.1. Anatomy of a SummarizedExperiment

The SummarizedExperiment package contains two classes: SummarizedExperiment and
RangedSummarizedExperiment.

SummarizedExperiment is a matrix-like container where rows represent features of interest
(e.g. genes, transcripts, exons, etc.) and columns represent samples. The objects contain
one or more assays, each represented by a matrix-like object of numeric or other mode. The
rows of a SummarizedExperiment object represent features of interest. Information about
these features is stored in a DataFrame object, accessible using the function rowData().
Each row of the DataFrame provides information on the feature in the corresponding row

253

19. Introduction to SummarizedExperiment

of the SummarizedExperiment object. Columns of the DataFrame represent different at-
tributes of the features of interest, e.g., gene or transcript IDs, etc.

RangedSummarizedExperiment is the “child” ” of the SummarizedExperiment class
which means that all the methods on SummarizedExperiment also work on a
RangedSummarizedExperiment.

The fundamental difference between the two classes is that the rows of a RangedSummarizedExperiment
object represent genomic ranges of interest instead of a DataFrame of features. The
RangedSummarizedExperiment ranges are described by a GRanges or a GRangesList
object, accessible using the rowRanges() function.

Figure 19.1 displays the class geometry and highlights the vertical (column) and horizontal
(row) relationships.

19.1.1. Assays

The airway package contains an example dataset from an RNA-Seq experiment
of read counts per gene for airway smooth muscles. These data are stored in a
RangedSummarizedExperiment object which contains 8 different experimental and assays
64,102 gene transcripts.

Loading required package: airway

library(SummarizedExperiment)
data(airway, package="airway")
se <- airway
se

class: RangedSummarizedExperiment
dim: 63677 8
metadata(1): ''
assays(1): counts
rownames(63677): ENSG00000000003 ENSG00000000005 ... ENSG00000273492
ENSG00000273493

rowData names(10): gene_id gene_name ... seq_coord_system symbol
colnames(8): SRR1039508 SRR1039509 ... SRR1039520 SRR1039521
colData names(9): SampleName cell ... Sample BioSample

254

19. Introduction to SummarizedExperiment

Figure 19.1.: Summarized Experiment. There are three main components, the colData(),
the rowData() and the assays(). The accessors for the various parts of a
complete SummarizedExperiment object match the names.

255

19. Introduction to SummarizedExperiment

To retrieve the experiment data from a SummarizedExperiment object one can use the
assays() accessor. An object can have multiple assay datasets each of which can be
accessed using the $ operator. The airway dataset contains only one assay (counts). Here
each row represents a gene transcript and each column one of the samples.

assays(se)$counts

SRR1039508SRR1039509SRR1039512SRR1039513SRR1039516SRR1039517SRR1039520SRR1039521
ENSG00000000003679 448 873 408 1138 1047 770 572
ENSG00000000005 0 0 0 0 0 0 0 0
ENSG00000000419467 515 621 365 587 799 417 508
ENSG00000000457260 211 263 164 245 331 233 229
ENSG0000000046060 55 40 35 78 63 76 60
ENSG00000000938 0 0 2 0 1 0 0 0
ENSG000000009713251 3679 6177 4252 6721 11027 5176 7995
ENSG000000010361433 1062 1733 881 1424 1439 1359 1109
ENSG00000001084519 380 595 493 820 714 696 704
ENSG00000001167394 236 464 175 658 584 360 269

19.1.2. ‘Row’ (regions-of-interest) data

The rowRanges() accessor is used to view the range information for a RangedSummarizedExperiment.
(Note if this were the parent SummarizedExperiment class we’d use rowData()). The
data are stored in a GRangesList object, where each list element corresponds to one gene
transcript and the ranges in each GRanges correspond to the exons in the transcript.

rowRanges(se)

GRangesList object of length 63677:
$ENSG00000000003
GRanges object with 17 ranges and 2 metadata columns:

seqnames ranges strand | exon_id exon_name
<Rle> <IRanges> <Rle> | <integer> <character>

[1] X 99883667-99884983 - | 667145 ENSE00001459322
[2] X 99885756-99885863 - | 667146 ENSE00000868868
[3] X 99887482-99887565 - | 667147 ENSE00000401072
[4] X 99887538-99887565 - | 667148 ENSE00001849132
[5] X 99888402-99888536 - | 667149 ENSE00003554016

256

19. Introduction to SummarizedExperiment

...
[13] X 99890555-99890743 - | 667156 ENSE00003512331
[14] X 99891188-99891686 - | 667158 ENSE00001886883
[15] X 99891605-99891803 - | 667159 ENSE00001855382
[16] X 99891790-99892101 - | 667160 ENSE00001863395
[17] X 99894942-99894988 - | 667161 ENSE00001828996

seqinfo: 722 sequences (1 circular) from an unspecified genome

...
<63676 more elements>

19.1.3. ‘Column’ (sample) data

Sample meta-data describing the samples can be accessed using colData(), and is a
DataFrame that can store any number of descriptive columns for each sample row.

colData(se)

DataFrame with 8 rows and 9 columns
SampleName cell dex albut Run avgLength
<factor> <factor> <factor> <factor> <factor> <integer>

SRR1039508 GSM1275862 N61311 untrt untrt SRR1039508 126
SRR1039509 GSM1275863 N61311 trt untrt SRR1039509 126
SRR1039512 GSM1275866 N052611 untrt untrt SRR1039512 126
SRR1039513 GSM1275867 N052611 trt untrt SRR1039513 87
SRR1039516 GSM1275870 N080611 untrt untrt SRR1039516 120
SRR1039517 GSM1275871 N080611 trt untrt SRR1039517 126
SRR1039520 GSM1275874 N061011 untrt untrt SRR1039520 101
SRR1039521 GSM1275875 N061011 trt untrt SRR1039521 98

Experiment Sample BioSample
<factor> <factor> <factor>

SRR1039508 SRX384345 SRS508568 SAMN02422669
SRR1039509 SRX384346 SRS508567 SAMN02422675
SRR1039512 SRX384349 SRS508571 SAMN02422678
SRR1039513 SRX384350 SRS508572 SAMN02422670
SRR1039516 SRX384353 SRS508575 SAMN02422682
SRR1039517 SRX384354 SRS508576 SAMN02422673
SRR1039520 SRX384357 SRS508579 SAMN02422683
SRR1039521 SRX384358 SRS508580 SAMN02422677

257

19. Introduction to SummarizedExperiment

This sample metadata can be accessed using the $ accessor which makes it easy to subset
the entire object by a given phenotype.

subset for only those samples treated with dexamethasone
se[, se$dex == "trt"]

class: RangedSummarizedExperiment
dim: 63677 4
metadata(1): ''
assays(1): counts
rownames(63677): ENSG00000000003 ENSG00000000005 ... ENSG00000273492
ENSG00000273493

rowData names(10): gene_id gene_name ... seq_coord_system symbol
colnames(4): SRR1039509 SRR1039513 SRR1039517 SRR1039521
colData names(9): SampleName cell ... Sample BioSample

19.1.4. Experiment-wide metadata

Meta-data describing the experimental methods and publication references can be accessed
using metadata().

metadata(se)

[[1]]
Experiment data
Experimenter name: Himes BE
Laboratory: NA
Contact information:
Title: RNA-Seq transcriptome profiling identifies CRISPLD2 as a glucocorticoid responsive gene that modulates cytokine function in airway smooth muscle cells.
URL: http://www.ncbi.nlm.nih.gov/pubmed/24926665
PMIDs: 24926665

Abstract: A 226 word abstract is available. Use 'abstract' method.

Note that metadata() is just a simple list, so it is appropriate for any experiment wide
metadata the user wishes to save, such as storing model formulas.

258

19. Introduction to SummarizedExperiment

metadata(se)$formula <- counts ~ dex + albut

metadata(se)

[[1]]
Experiment data
Experimenter name: Himes BE
Laboratory: NA
Contact information:
Title: RNA-Seq transcriptome profiling identifies CRISPLD2 as a glucocorticoid responsive gene that modulates cytokine function in airway smooth muscle cells.
URL: http://www.ncbi.nlm.nih.gov/pubmed/24926665
PMIDs: 24926665

Abstract: A 226 word abstract is available. Use 'abstract' method.

$formula
counts ~ dex + albut

19.2. Common operations on SummarizedExperiment

19.2.1. Subsetting

• [Performs two dimensional subsetting, just like subsetting a matrix or data frame.

subset the first five transcripts and first three samples
se[1:5, 1:3]

class: RangedSummarizedExperiment
dim: 5 3
metadata(2): '' formula
assays(1): counts
rownames(5): ENSG00000000003 ENSG00000000005 ENSG00000000419
ENSG00000000457 ENSG00000000460

rowData names(10): gene_id gene_name ... seq_coord_system symbol
colnames(3): SRR1039508 SRR1039509 SRR1039512
colData names(9): SampleName cell ... Sample BioSample

• $ operates on colData() columns, for easy sample extraction.

259

19. Introduction to SummarizedExperiment

se[, se$cell == "N61311"]

class: RangedSummarizedExperiment
dim: 63677 2
metadata(2): '' formula
assays(1): counts
rownames(63677): ENSG00000000003 ENSG00000000005 ... ENSG00000273492
ENSG00000273493

rowData names(10): gene_id gene_name ... seq_coord_system symbol
colnames(2): SRR1039508 SRR1039509
colData names(9): SampleName cell ... Sample BioSample

19.2.2. Getters and setters

• rowRanges() / (rowData()), colData(), metadata()

counts <- matrix(1:15, 5, 3, dimnames=list(LETTERS[1:5], LETTERS[1:3]))

dates <- SummarizedExperiment(assays=list(counts=counts),
rowData=DataFrame(month=month.name[1:5], day=1:5))

Subset all January assays
dates[rowData(dates)$month == "January",]

class: SummarizedExperiment
dim: 1 3
metadata(0):
assays(1): counts
rownames(1): A
rowData names(2): month day
colnames(3): A B C
colData names(0):

• assay() versus assays() There are two accessor functions for extracting the assay
data from a SummarizedExperiment object. assays() operates on the entire list of
assay data as a whole, while assay() operates on only one assay at a time. assay(x,
i) is simply a convenience function which is equivalent to assays(x)[[i]].

260

19. Introduction to SummarizedExperiment

assays(se)

List of length 1
names(1): counts

assays(se)[[1]][1:5, 1:5]

SRR1039508 SRR1039509 SRR1039512 SRR1039513 SRR1039516
ENSG00000000003 679 448 873 408 1138
ENSG00000000005 0 0 0 0 0
ENSG00000000419 467 515 621 365 587
ENSG00000000457 260 211 263 164 245
ENSG00000000460 60 55 40 35 78

assay defaults to the first assay if no i is given
assay(se)[1:5, 1:5]

SRR1039508 SRR1039509 SRR1039512 SRR1039513 SRR1039516
ENSG00000000003 679 448 873 408 1138
ENSG00000000005 0 0 0 0 0
ENSG00000000419 467 515 621 365 587
ENSG00000000457 260 211 263 164 245
ENSG00000000460 60 55 40 35 78

assay(se, 1)[1:5, 1:5]

SRR1039508 SRR1039509 SRR1039512 SRR1039513 SRR1039516
ENSG00000000003 679 448 873 408 1138
ENSG00000000005 0 0 0 0 0
ENSG00000000419 467 515 621 365 587
ENSG00000000457 260 211 263 164 245
ENSG00000000460 60 55 40 35 78

261

19. Introduction to SummarizedExperiment

19.2.3. Range-based operations

• subsetByOverlaps() SummarizedExperiment objects support all of the findOverlaps()
methods and associated functions. This includes subsetByOverlaps(), which makes
it easy to subset a SummarizedExperiment object by an interval.

In tne next code block, we define a region of interest (or many regions of interest) and then
subset our SummarizedExperiment by overlaps with this region.

Subset for only rows which are in the interval 100,000 to 110,000 of
chromosome 1
roi <- GRanges(seqnames="1", ranges=100000:1100000)
sub_se = subsetByOverlaps(se, roi)
sub_se

class: RangedSummarizedExperiment
dim: 74 8
metadata(2): '' formula
assays(1): counts
rownames(74): ENSG00000131591 ENSG00000177757 ... ENSG00000272512
ENSG00000273443

rowData names(10): gene_id gene_name ... seq_coord_system symbol
colnames(8): SRR1039508 SRR1039509 ... SRR1039520 SRR1039521
colData names(9): SampleName cell ... Sample BioSample

dim(sub_se)

[1] 74 8

19.3. Constructing a SummarizedExperiment

Often, SummarizedExperiment or RangedSummarizedExperiment objects are returned by
functions written by other packages. However it is possible to create them by hand with a
call to the SummarizedExperiment() constructor. The code below is simply to illustrate
the mechanics of creating an object from scratch. In practice, you will probably have the
pieces of the object from other sources such as Excel files or csv files.

Constructing a RangedSummarizedExperiment with a GRanges as the rowRanges argu-
ment:

262

19. Introduction to SummarizedExperiment

nrows <- 200
ncols <- 6
counts <- matrix(runif(nrows * ncols, 1, 1e4), nrows)
rowRanges <- GRanges(rep(c("chr1", "chr2"), c(50, 150)),

IRanges(floor(runif(200, 1e5, 1e6)), width=100),
strand=sample(c("+", "-"), 200, TRUE),
feature_id=sprintf("ID%03d", 1:200))

colData <- DataFrame(Treatment=rep(c("ChIP", "Input"), 3),
row.names=LETTERS[1:6])

SummarizedExperiment(assays=list(counts=counts),
rowRanges=rowRanges, colData=colData)

class: RangedSummarizedExperiment
dim: 200 6
metadata(0):
assays(1): counts
rownames: NULL
rowData names(1): feature_id
colnames(6): A B ... E F
colData names(1): Treatment

A SummarizedExperiment can be constructed with or without supplying a DataFrame for
the rowData argument:

SummarizedExperiment(assays=list(counts=counts), colData=colData)

class: SummarizedExperiment
dim: 200 6
metadata(0):
assays(1): counts
rownames: NULL
rowData names(0):
colnames(6): A B ... E F
colData names(1): Treatment

263

20. Ranges Exercises

In the following exercises, we will use the GenomicRanges package to explore range opera-
tions. We will use the AnnotationHub package to load DNAse hypersensitivity data from
the ENCODE project. In practice, the ENCODE project published datasets like these as
bed files. AnnotationHub has packaged these into GRanges objects that we can load and
use directly. However, if you have a bed file of your own (peak calls, enhancer regions,
etc.), you can load them into GRanges objects using rtracklayer::import.

20.1. Exercise 1

In this exercise, we will use DNAse hypersensitivity data to practice working with a
GRanges object.

• Use the AnnotationHub package to find the goldenpath/hg19/encodeDCC/wgEncodeUwDnase/wgEncodeUwDnaseK562PkRep1.narrowPeak.gz
GRanges object. Load that into R as the variable dnase.

library(AnnotationHub)
ah = AnnotationHub()
query(ah, "goldenpath/hg19/encodeDCC/wgEncodeUwDnase/wgEncodeUwDnaseK562PkRep1.narrowPeak.gz")
the thing above should have only one record, so we can
just grab it
dnase = query(ah, "goldenpath/hg19/encodeDCC/wgEncodeUwDnase/wgEncodeUwDnaseK562PkRep1.narrowPeak.gz")[[1]]

• What type of object is dnase?

dnase
class(dnase)

• What metadata is stored in dnase?

mcols(dnase)

• How many peaks are on each chromosome?

264

20. Ranges Exercises

library(GenomicFeatures)
table(seqnames(dnase))

• What are the mean, min, max, and median widths of the peaks?

summary(width(dnase))

• What are the sequences that were used in the analysis? Do the names have “chr” or
not? Experiment with changing the seqlevelsStyle to adjust the sequence names.

seqlevels(dnase)
seqlevelsStyle(dnase)
seqlevelsStyle(dnase) = 'ensembl'
seqlevelsStyle(dnase)
seqlevels(dnase)

• What is the total amount of “landscape” covered by the peaks? Assume that the
peaks do not overlap. What portion of the genome does this represent?

sum(width(dnase))
sum(seqlengths(dnase))
sum(width(dnase))/sum(seqlengths(dnase))

20.2. Exercise 2

In this exercise, we are going to load the second DNAse hypersensitivity replicate to inves-
tigate overlaps with the first replicate.

• Use the AnnotationHub to find the second replicate, goldenpath/hg19/encodeDCC/wgEncodeUwDnase/wgEncodeUwDnaseK562PkRep2.narrowPeak.gz.
Load that as dnase2.

query(ah, "goldenpath/hg19/encodeDCC/wgEncodeUwDnase/wgEncodeUwDnaseK562PkRep2.narrowPeak.gz")
the thing above should have only one record, so we can
just grab it
dnase2 = query(ah, "goldenpath/hg19/encodeDCC/wgEncodeUwDnase/wgEncodeUwDnaseK562PkRep2.narrowPeak.gz")[[1]]

• How many peaks are there in dnase and dnase2? Are there are similar number?

265

20. Ranges Exercises

length(dnase)
length(dnase2)

• What are the peak sizes for dnase2?

summary(width(dnase2))

• What proportion of the genome does dnase2 cover?

sum(width(dnase))/sum(seqlengths(dnase))

• Count the number of peaks from dnase that overlap with dnase2.

sum(dnase %over% dnase2)

• Assume that your peak-caller was “too specific” and that you want to expand your
peaks by 50 bp on each end (so make them 100 bp larger). Use a combination of
resize (and pay attention to the fix argument) and width to do this expansion to
dnase and call the new GRanges object “dnase_wide”.

w = width(dnase)
dnase_wide = resize(dnase, width=w+100, fix='center') #make a copy
width(dnase_wide)

20.3. Exercise 3

In this exercise, we are going to look at the overlap of DNAse sites relative to genes. To
get started, install and load the TxDb.Hsapiens.UCSC.hg19.knownGene txdb object.

BiocManager::install("TxDb.Hsapiens.UCSC.hg19.knownGene")
library("TxDb.Hsapiens.UCSC.hg19.knownGene")
kg = TxDb.Hsapiens.UCSC.hg19.knownGene

• Load the transcripts from the knownGene txdb into a variable. What is the class of
this object?

266

20. Ranges Exercises

library("TxDb.Hsapiens.UCSC.hg19.knownGene")
kg = TxDb.Hsapiens.UCSC.hg19.knownGene
gx = genes(kg)
class(gx)
length(gx)

• Read about the flank method for GRanges objects. How could you use that to get
the “promoter” regions of the transcripts? Let’s assume that the promoter region is
2kb upstream of the gene.

flank(gx,2000)

• Instead of using flank, could you do the same thing with the TxDb object? (See
?promoters).

proms = promoters(kg)

• Do any of the regions in the promoters overlap with each other?

summary(countOverlaps(proms))

• To find overlap of our DNAse sites with promoters, let’s collapse overlapping “pro-
moters” to just keep the contiguous regions by using reduce.

reduce takes all overlapping regions and collapses them
into a single region that spans all of the overlapping regions
prom_regions = reduce(proms)

now we can check for overlaps
summary(countOverlaps(prom_regions))

• Count the number of DNAse sites that overlap with our promoter regions.

sum(dnase %over% prom_regions)
if you notice no overlap, check the seqlevels
and seqlevelsStyle
seqlevelsStyle(dnase) = "UCSC"
sum(dnase %over% prom_regions)
sum(dnase2 %over% prom_regions)

267

20. Ranges Exercises

• Is this surprising? If we were to assume that the promoter and dnase regions are
“independent” of each other, what number of overlaps would we expect?

prop_proms = sum(width(prom_regions))/sum(seqlengths(prom_regions))
prop_dnase = sum(width(dnase))/sum(seqlengths(prom_regions))
Iff the dnase and promoter regions are
not related, then we would expect this number
of DNAse overlaps with promoters.
prop_proms * prop_dnase * length(dnase)

20.4. Exercise 4

We’ll be using data from histone modification ChIP-seq experiments in human cells to
illustrate the concepts of genomic ranges and features. The data consists of genomic inter-
vals representing regions of the genome where specific histone modifications are enriched.
These intervals are typically identified using ChIP-seq, a technique that maps protein-DNA
interactions across the genome.

The ChIP-seq data is stored in a BED file format, which is a tab-delimited text file format
commonly used to represent genomic intervals. Each line in the BED file corresponds to a
genomic interval and contains information about the chromosome, start and end positions,
and strand orientation of the interval. Additional columns may include metadata such as
the signal strength or significance of the interval.

The AnnotationHub package in Bioconductor provides access to a wide range of genomic
datasets, including ChIP-seq data. We can use this package to retrieve the ChIP-seq data
for histone modifications in human cells and convert it into a GenomicRanges object for
further analysis.

https://www.encodeproject.org/chip-seq/histone/

Let’s start by loading the AnnotationHub package and retrieving the ChIP-seq data for
histone modifications in human cells. You can read more about the AnnotationHub package
and how to use it in the Bioconductor documentation.

library(AnnotationHub)
ah <- AnnotationHub()

There are multiple ways to search the AnnotationHub database. We’ve done that for you
and here are the GRanges objects for each of four histone marks, and one histone mark
replicate.

268

https://www.encodeproject.org/chip-seq/histone/

20. Ranges Exercises

h3k4me1 <- ah[['AH25832']]
h3k4me3 <- ah[['AH25833']]
h3k9ac <- ah[['AH25834']]
h3k27me3 <- ah[['AH25835']]
h3k4me3_2 <- ah[['AH27284']]

Each of these variables now represents the peak calls after a chip-seq experiment pulling
down the histone mark of interest. In the encode project these records were bed files. The
bed files have been converted to GRanges objects to allow computation within R.

Grab cpg islands as well
cpg = query(ah, c('cpg','UCSC','hg19'))[[1]]

Let’s say that we don’t know the behavior of the histone methylation marks with respect
to CpG islands. We could ask the question, “What is the overlap of the histone peaks with
CpG islands?”

sum(h3k4me1 %over% cpg)

We might want to actually count the number of bases of overlap between the methyl mark
and CpG islands.

The intersection of two peak sets results in the
overlapping regions as a new set of regions
The width of each peak is the number of overlapping bases
And the sum of the widths is the total bases overlapping
sum(width(intersect(h3k4me1, cpg)))

But some methyl marks are known to have very broad signals, meaning that there is a
higher chance of overlapping CpG islands just because there are more methylated bases.
We can adjust for this by “normalizing” for all possible bases covered by either set of peaks,
using union. We might think of this as a sort of “enrichment score” of one set in another
set.

sum(width(union(h3k4me1, cpg)))
and now "normalize"
sum(width(intersect(h3k4me1, cpg)))/sum(width(union(h3k4me1, cpg)))

Let’s write a small function to calculate our little enrichment score.

269

20. Ranges Exercises

range_enrichment_score <- function(r1, r2) {
i = sum(width(intersect(r1, r2)))
u = sum(width(union(r1,r2)))
return(i/u)

}

And give it a try:

range_enrichment_score(h3k4me1, cpg)

270

21. ATAC-Seq with Bioconductor

271

Overview

Pre-requisites

This workshop assumes:

• A working and up-to-date version of R
• Basic knowledge of R syntax
• Familiarity with the GenomicRanges package and range manipulations
• Familiarity with BAM files and their contents

Participation

After a very brief review of ATAC-Seq and chromatin accessibility, students will work
independently to follow this workflow. Additional materials are provided as links at the
end of the workshop for those wanting deeper exposure. Additional materials include
alignment from FASTQ files and peak calling.

R / Bioconductor packages used

• Rsamtools

• GenomicRanges

• GenomicFeatures

• GenomicAlignments
• rtracklayer
• heatmaps

272

https://bioconductor.org/packages/3.19/GenomicRanges
https://bioconductor.org/packages/3.19/Rsamtools
https://bioconductor.org/packages/3.19/GenomicRanges
https://bioconductor.org/packages/3.19/GenomicFeatures
https://bioconductor.org/packages/3.19/GenomicAlignments
https://bioconductor.org/packages/3.19/rtracklayer
https://bioconductor.org/packages/3.19/heatmaps

Time outline

Time outline

An example for a 45-minute workshop:

Activity Time
Introduction 15m
Independent work 2-3hr
Additional exercises (optional, external) up to 12 hours

Learning goals

• Describe how to import sequence alignments in BAM format into R
• Relate fragment size to genomic characteristics such as nucleosome occupancy and

open chromatin.
• Perform basic alignment manipulations in R to enrich ATAC-seq data for chromatin

characteristics.
• Gain familiarity with the IGV genome browser and examining data in genomic con-

text.
• Visualize summaries of genomic signal using profile plots and heatmaps.

Learning objectives

• Load and save genomic data in BAM and BigWig formats [GenomicAlignments and
rtracklayer].

• Perform basic QC plots from ATAC-Seq data.
• Isolate nucleosome-free and mononucleosome regions from ATAC-seq data.
• Install and use IGV to visualize data in genomic context.
• Create profile plots using the heatmaps package.

273

22. Background

Chromatin accessibility assays measure the extent to which DNA is open and accessible.
Such assays now use high throughput sequencing as a quantitative readout. DNAse assays,
first using microarrays(Crawford, Davis, et al. 2006) and then DNAse-Seq (Crawford, Holt,
et al. 2006), requires a larger amount of DNA and is labor-indensive and has been largely
supplanted by ATAC-Seq (Buenrostro et al. 2013).

The Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-
seq) method maps chromatin accessibility genome-wide. This method quantifies DNA
accessibility with a hyperactive Tn5 transposase that cuts and inserts sequencing adapters
into regions of chromatin that are accessible. High throughput sequencing of fragments
produced by the process map to regions of increased accessibility, transcription factor
binding sites, and nucleosome positioning. The method is both fast and sensitive and can
be used as a replacement for DNAse and MNase.

An early review of chromatin accessibility assays (Tsompana and Buck 2014) compares the
use cases, pros and cons, and expected signals from each of the most common approaches
(Figure @ref(fig:chromatinAssays)).

274

22. Background

Figure 22.1.: Chromatin accessibility methods, compared. Representative DNA fragments
generated by each assay are shown, with end locations within chromatin de-
fined by colored arrows. Bar diagrams represent data signal obtained from
each assay across the entire region. The footprint created by a transcription
factor (TF) is shown for ATAC-seq and DNase-seq experiments.

The first manuscript describing ATAC-Seq protocol and findings outlined how ATAC-
Seq data “line up” with other datatypes such as ChIP-seq and DNAse-seq (Figure
@ref(fig:greenleaf)). They also highlight how fragment length correlates with specific
genomic regions and characteristics (Buenrostro et al. 2013, fig. 3).

275

22. Background

Figure 22.2.: Multimodal chromatin comparisons. From (Buenrostro et al. 2013), Figure 4.
(a) CTCF footprints observed in ATAC-seq and DNase-seq data, at a specific
locus on chr1. (b) Aggregate ATAC-seq footprint for CTCF (motif shown)
generated over binding sites within the genome (c) CTCF predicted bind-
ing probability inferred from ATAC-seq data, position weight matrix (PWM)
scores for the CTCF motif, and evolutionary conservation (PhyloP). Right-
most column is the CTCF ChIP-seq data (ENCODE) for this GM12878 cell
line, demonstrating high concordance with predicted binding probability.

Buenrostro et al. provide a detailed protocol for performing ATAC-Seq and quality control
of results (Buenrostro et al. 2015). Updated and modified protocols that improve on
signal-to-noise and reduce input DNA requirements have been described.

276

22. Background

22.1. Informatics overview

ATAC-Seq protocols typically utilize paired-end sequencing protocols. The reads are
aligned to the respective genome using bowtie2, BWA, or other short-read aligner. The
result, after appropriate manipulation, often using samtools, results in a BAM file.
Among other details, the BAM format includes columns for:

knitr::include_graphics('imgs/bam_shot.png')

Figure 22.3.: A BAM file in text form. The output of samtools view is the text format of
the BAM file (called SAM format). Bioconductor and many other tools use
BAM files for input. Note that BAM files also often include an index .bai file
that enables random access into the file; one can read just a genomic region
without having to read the entire file.

• sequence name (chr1)
• start position (integer)
• a CIGAR string that describes the alignment in a compact form
• the sequence to which the pair aligns
• the position to which the pair aligns
• a bit flag field that describes multiple characteristics of the alignment
• the sequence and quality string of the read
• additional tags that tend to be aligner-specific

277

22. Background

Duplicate fragments (those with the same start and end position of other reads) are marked
and likely discarded. Reads that fail to align “properly” are also often excluded from
analysis. It is worth noting that most software packages allow simple “marking” of such
reads and that there is usually no need to create a special BAM file before proceeding with
downstream work.

After alignment and BAM processing, the workflow can switch to Bioconductor.

22.2. Working with sequencing data in Bioconductor

The Bioconductor project includes several infrastructure packages for dealing with ranges
(sequence name, start, end, +/- strand) on sequences (Lawrence et al. 2013) as well as
capabilities with working with Fastq files directly (Morgan et al. 2016).

Table 22.1.: Commonly used Bioconductor and their high-level use cases.
Package Use cases
Rsamtools low level access to FASTQ, VCF, SAM,

BAM, BCF formats
GenomicRanges Container and methods for handling

genomic reagions
GenomicFeatures Work with transcript databases, gff, gtf

and BED formats
GenomicAlignments Reader for BAM format
rtracklayer import and export multiple UCSC file

formats including BigWig and Bed

As noted in the previous section, the output of an ATAC-Seq experiment is a BAM
file. As paired-end sequencing is a commonly-applied approach for ATAC-Seq, the
readGAlignmentPairs function is the appropriate method to use.

278

https://bioconductor.org/packages/3.19/Rsamtools
https://bioconductor.org/packages/3.19/GenomicRanges
https://bioconductor.org/packages/3.19/GenomicFeatures
https://bioconductor.org/packages/3.19/GenomicAlignments
https://bioconductor.org/packages/3.19/rtracklayer

23. Data import and quality control

library(GenomicAlignments)

Reading a paired-end BAM file looks a bit complicated, but the following code will:

1. Read the included BAM file.
2. Include read pairs only (isPaired = TRUE)
3. Include properly paired reads (isProperPair = TRUE)
4. Include reads with mapping quality >= 1
5. Add a couple of additional fields, mapq (mapping quality) and isize (insert size) to

the default fields.

greenleaf <- readGAlignmentPairs(
"https://github.com/seandavi/RBiocBook/raw/main/atac-seq/extdata/Sorted_ATAC_21_22.bam",
param = ScanBamParam(

mapqFilter = 1,
flag = scanBamFlag(

isPaired = TRUE,
isProperPair = TRUE

),
what = c("mapq", "isize")

)
)

Exercise: What is the class of greenleaf? Exercise: Use the GenomicAlignments::first()
accessor to get the first read of the pair as a GAlignments object. Save the result as a
variable called gl_first_read. Use the mcols accessor to find the “metadata columns”
of gl_first_read. Exercise: How many read pairs map to each chromosome?

We can make plot of the number of reads mapping to each chromosome.

279

23. Data import and quality control

library(ggplot2)
library(dplyr)
chromCounts <- table(seqnames(greenleaf)) %>%

data.frame() %>%
dplyr::rename(chromosome = Var1, count = Freq)

To keep things small, the example BAM file includes only chromosomes 21 and 22.

ggplot(chromCounts, aes(x = chromosome, y = count)) +
geom_bar(stat = "identity") +
theme(axis.text.x = element_text(angle = 45, hjust = 1))

0

50000

100000

150000

ch
r1

ch
r2

ch
r3

ch
r4

ch
r5

ch
r6

ch
r7

ch
r8

ch
r9
ch

r1
0
ch

r1
1
ch

r1
2
ch

r1
3
ch

r1
4
ch

r1
5
ch

r1
6
ch

r1
7
ch

r1
8
ch

r1
9
ch

r2
0
ch

r2
1
ch

r2
2
ch

rX
ch

rY
ch

rM

chromosome

co
un

t

Figure 23.1.: Reads per chromosome. In our example data, we are using only chromosomes
21 and 22.

Normalizing by the chromosome length can yield the reads per megabase which should
crudely be similar across all chromosomes.

chromCounts <- chromCounts %>%
dplyr::mutate(readsPerMb = (count / (seqlengths(greenleaf) / 1e6)))

280

23. Data import and quality control

And show a plot. For two chromosomes, this is a little underwhelming.

ggplot(chromCounts, aes(x = chromosome, y = readsPerMb)) +
geom_bar(stat = "identity") +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
theme_bw()

0

1000

2000

3000

chr1chr2chr3chr4chr5chr6chr7chr8chr9chr10chr11chr12chr13chr14chr15chr16chr17chr18chr19chr20chr21chr22chrXchrYchrM
chromosome

re
ad

sP
er

M
b

Figure 23.2.: Read counts normalized by chromosome length. This is not a particularly
important plot, but it can be useful to see the relative contribution of each
chromosome given its length.

23.1. Coverage

The coverage method for genomic ranges calculates, for each base, the number of overlap-
ping features. In the case of a BAM file from ATAC-Seq converted to a GAlignmentPairs
object, the coverage gives us an idea of the extent to which reads pile up to form peaks.

cvg <- coverage(greenleaf)
class(cvg)

281

23. Data import and quality control

[1] "SimpleRleList"
attr(,"package")
[1] "IRanges"

The coverage is returned as a SimpleRleList object. Using names can get us the names
of the elements of the list.

names(cvg)

[1] "chr1" "chr2" "chr3" "chr4" "chr5" "chr6" "chr7" "chr8" "chr9"
[10] "chr10" "chr11" "chr12" "chr13" "chr14" "chr15" "chr16" "chr17" "chr18"
[19] "chr19" "chr20" "chr21" "chr22" "chrX" "chrY" "chrM"

There is a name for each chromosome. Looking at the chr21 entry:

cvg$chr21

integer-Rle of length 48129895 with 397462 runs
Lengths: 9411376 50 11 50 ... 36 14 28 10806
Values : 0 2 0 2 ... 1 2 1 0

we see that each chromosome is represented as an Rle, short for run-length-encoding. Sim-
ply put, since along the chromosome there are many repeated values, we can recode the
long vector as a set of (length: value) pairs. For example, if the first 9,410,000 base pairs
have 0 coverage, we encode that as (9,410,000: 0). Doing that across the chromosome can
very significantly reduce the memory use for genomic coverage.

The following little function, plotCvgHistByChrom can plot a histogram of the coverage
for a chromosome.

plotCvgHistByChrom <- function(cvg, chromosome) {
library(ggplot2)
cvgcounts <- as.data.frame(table(cvg[[chromosome]]))
cvgcounts[, 1] <- as.numeric(as.character(cvgcounts[, 1]))
colnames(cvgcounts) <- c("Coverage", "Count")
ggplot(cvgcounts, aes(x = Coverage, y = Count)) +

ggtitle(paste("Chromosome", chromosome)) +
geom_point(alpha = 0.5) +
geom_smooth(span = 0.2) +

282

23. Data import and quality control

scale_y_log10() +
theme_bw()

}
for (i in c("chr21", "chr22")) {

print(plotCvgHistByChrom(cvg, i))
}

1e+02

1e+05

1e+08

0 200 400 600
Coverage

C
ou

nt

Chromosome chr21

283

23. Data import and quality control

1e+02

1e+05

1e+08

0 20 40 60
Coverage

C
ou

nt
Chromosome chr22

23.2. Fragment Lengths

The first ATAC-Seq manuscript (Buenrostro et al. 2013) highlighted the relationship be-
tween fragment length and nucleosomes (see Figure @ref{fig:flgreenleaf}).

knitr::include_graphics("https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3959825/bin/nihms554473f2.jpg")

284

23. Data import and quality control

Figure 23.3.: Relationship between fragment length and nucleosome number.

Remember that we loaded the example BAM file with insert sizes (isize). We can use
that “column” to examine the fragment lengths (another name for insert size). Also, note
that the insert size for the first read and the second are the same (absolute value). Here,
we will use first.

GenomicAlignments::first(greenleaf)
mcols(GenomicAlignments::first(greenleaf))
class(mcols(GenomicAlignments::first(greenleaf)))
head(mcols(GenomicAlignments::first(greenleaf))$isize)
fraglengths <- abs(mcols(GenomicAlignments::first(greenleaf))$isize)

We can plot the fragment length density (histogram) using the density function.

plot(density(fraglengths, bw = 0.05), xlim = c(0, 1000))

285

23. Data import and quality control

0 200 400 600 800 1000

0.
00

0.
10

0.
20

0.
30

density(x = fraglengths, bw = 0.05)

N = 279884 Bandwidth = 0.05

D
en

si
ty

Figure 23.4.: Fragment length histogram.

Exercise: Adjust the xlim, bw, and try log="y" in the plot to highlight features present in
figure ??.

And for fun, the ggplot2 version:

library(dplyr)
library(ggplot2)
fragLenPlot <- table(fraglengths) %>%

data.frame() %>%
rename(

InsertSize = fraglengths,
Count = Freq

) %>%
mutate(

InsertSize = as.numeric(as.vector(InsertSize)),
Count = as.numeric(as.vector(Count))

) %>%
ggplot(aes(x = InsertSize, y = Count)) +
geom_line()

print(fragLenPlot + theme_bw() + lims(x = c(-1, 250)))

286

23. Data import and quality control

0

1000

2000

3000

0 50 100 150 200 250
InsertSize

C
ou

nt

Knowing that the nucleosome-free regions will have insert sizes shorter than one nucleosome,
we can isolate the read pairs that have that characteristic.

gl_nf <- greenleaf[mcols(GenomicAlignments::first(greenleaf))$isize < 100]

And the mononucleosome reads will be between 187 and 250 base pairs for insert
size/fragment length.

gl_mn <- greenleaf[mcols(GenomicAlignments::first(greenleaf))$isize > 187 &
mcols(GenomicAlignments::first(greenleaf))$isize < 250]

Finally, we expect nucleosome-free reads to be enriched near the TSS while mononucleo-
some reads should not be. We will use the heatmaps package to take a look at these two
sets of reads with respect to the tss of the human genome.

library(TxDb.Hsapiens.UCSC.hg19.knownGene)
proms <- promoters(TxDb.Hsapiens.UCSC.hg19.knownGene, 250, 250)
seqs <- c("chr21", "chr22")
seqlevels(proms, pruning.mode = "coarse") <- seqs # only chromosome 21 and 22

Take a look at the heatmaps package vignette to learn more about the heatmaps package
capabilities.

287

https://bioconductor.org/packages/3.19/heatmaps
https://bioconductor.org/packages/3.19/heatmaps

23. Data import and quality control

library(heatmaps)
gl_nf_hm <- CoverageHeatmap(proms, coverage(gl_nf), coords = c(-250, 250))
label(gl_nf_hm) <- "NucFree"
scale(gl_nf_hm) <- c(0, 10)
plotHeatmapMeta(gl_nf_hm)

−200 −100 0 100 200

0
1

2
3

4

Relative Position

F
re

qu
en

cy

NucFree

Figure 23.5.: Enrichment of nucleosome free reads just upstream of the TSS.

gl_mn_hm <- CoverageHeatmap(proms, coverage(gl_mn), coords = c(-250, 250))
label(gl_mn_hm) <- "MonoNuc"
scale(gl_mn_hm) <- c(0, 10)
plotHeatmapMeta(gl_mn_hm)

288

23. Data import and quality control

−200 −100 0 100 200

0.
00

0.
15

0.
30

Relative Position

F
re

qu
en

cy

MonoNuc

Figure 23.6.: Depletion of nucleosome free reads just upstream of the TSS.

plotHeatmapList(list(gl_mn_hm, gl_nf_hm))

−250 0 250

MonoNuc

−250 0 250

NucFree

Figure 23.7.: Comparison of signals at TSS. Mononucleosome data on the left, nucleosome-
free on the right.

289

24. Viewing data in IGV

Install IGV from here.

We export the greenleaf data as a BigWig file.

library(rtracklayer)
export.bw(coverage(greenleaf), "greenleaf.bw")

Exercise: In IGV, choose hg19. Then, load the greenleaf.bw file and explore chromosomes
21 and 22. Exercise: Export the nucleosome-free portion of the data as a BigWig file and
examine that in IGV. Where do you expect to see the strongest signals?

290

https://software.broadinstitute.org/software/igv/download

25. Additional work

For those working extensively on ATAC-Seq, there is a great workflow/tutorial available
from Thomas Carrol:

https://rockefelleruniversity.github.io/RU_ATAC_Workshop.html

Feel free to work through it. In addition to the work above, there is also the ATACseqQC
package vignette that offers more than just QC. At least a couple more packages are
available in Bioconductor.

291

https://bioconductor.org/packages/3.19/ATACseqQC

Appendix

Session info

R version 4.4.0 (2024-04-24)
Platform: aarch64-apple-darwin20
Running under: macOS Sonoma 14.2.1

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: America/New_York
tzcode source: internal

attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods
[8] base

other attached packages:
[1] rtracklayer_1.64.0
[2] heatmaps_1.28.0
[3] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
[4] GenomicFeatures_1.56.0
[5] AnnotationDbi_1.66.0
[6] dplyr_1.1.4
[7] ggplot2_3.5.1
[8] GenomicAlignments_1.40.0
[9] Rsamtools_2.20.0
[10] Biostrings_2.72.1
[11] XVector_0.44.0

292

Session info

[12] SummarizedExperiment_1.34.0
[13] Biobase_2.64.0
[14] MatrixGenerics_1.16.0
[15] matrixStats_1.3.0
[16] GenomicRanges_1.56.0
[17] GenomeInfoDb_1.40.1
[18] IRanges_2.38.0
[19] S4Vectors_0.42.0
[20] BiocGenerics_0.50.0
[21] BiocStyle_2.32.0
[22] knitr_1.47

loaded via a namespace (and not attached):
[1] tidyselect_1.2.1 EBImage_4.46.0 farver_2.1.2
[4] blob_1.2.4 bitops_1.0-7 fastmap_1.2.0
[7] RCurl_1.98-1.14 XML_3.99-0.16.1 digest_0.6.35
[10] lifecycle_1.0.4 KEGGREST_1.44.0 RSQLite_2.3.7
[13] magrittr_2.0.3 compiler_4.4.0 rlang_1.1.4
[16] tools_4.4.0 plotrix_3.8-4 utf8_1.2.4
[19] yaml_2.3.8 htmlwidgets_1.6.4 S4Arrays_1.4.1
[22] labeling_0.4.3 bit_4.0.5 curl_5.2.1
[25] DelayedArray_0.30.1 RColorBrewer_1.1-3 KernSmooth_2.23-24
[28] abind_1.4-5 BiocParallel_1.38.0 withr_3.0.0
[31] grid_4.4.0 fansi_1.0.6 colorspace_2.1-0
[34] scales_1.3.0 tinytex_0.51 cli_3.6.2
[37] rmarkdown_2.27 crayon_1.5.2 generics_0.1.3
[40] httr_1.4.7 rjson_0.2.21 DBI_1.2.3
[43] cachem_1.1.0 zlibbioc_1.50.0 splines_4.4.0
[46] parallel_4.4.0 tiff_0.1-12 BiocManager_1.30.23
[49] restfulr_0.0.15 vctrs_0.6.5 Matrix_1.7-0
[52] jsonlite_1.8.8 fftwtools_0.9-11 bit64_4.0.5
[55] jpeg_0.1-10 locfit_1.5-9.9 glue_1.7.0
[58] codetools_0.2-20 gtable_0.3.5 BiocIO_1.14.0
[61] UCSC.utils_1.0.0 munsell_0.5.1 tibble_3.2.1
[64] pillar_1.9.0 htmltools_0.5.8.1 GenomeInfoDbData_1.2.12
[67] R6_2.5.1 evaluate_0.23 lattice_0.22-6
[70] png_0.1-8 memoise_2.0.1 SparseArray_1.4.8
[73] nlme_3.1-165 mgcv_1.9-1 xfun_0.44
[76] pkgconfig_2.0.3

293

MACS2

MACS2

The MACS2 package is a commonly-used package for calling peaks. Installation and other
details are available1.

pip install macs2

1https://github.com/taoliu/MACS

294

26. References

295

27. Transfer Learning in scATAC-seq and
scRNA-seq

27.1. Background

Analyzing open chromatin regions has been a crucial aspect of understanding gene regu-
lation and cellular identity. Over the years, several techniques have been developed to
identify and study these accessible regions of the genome. One of the earliest methods was
DNase-seq, which uses the DNase I enzyme to digest exposed DNA, followed by sequenc-
ing of the resulting fragments. This method, introduced in the late 1970s and adapted for
high-throughput sequencing in 2006, provided valuable insights into the locations of regula-
tory elements and transcription factor binding sites. Another technique, called FAIRE-seq
(Formaldehyde-Assisted Isolation of Regulatory Elements), was developed in 2007. This
method relies on the differential crosslinking of proteins to DNA in open and closed chro-
matin regions, followed by sequencing of the isolated DNA fragments. FAIRE-seq offered
a complementary approach to DNase-seq for identifying open chromatin regions. In 2013,
a groundbreaking method called ATAC-seq (Assay for Transposase-Accessible Chromatin
using sequencing) was introduced by Buenrostro et al. This technique revolutionized the
study of open chromatin by providing a simple, fast, and sensitive approach. ATAC-seq
employs a hyperactive Tn5 transposase that simultaneously cuts and inserts adapters into
accessible DNA regions. The resulting fragments are then sequenced, revealing the loca-
tions of open chromatin. ATAC-seq offers several advantages over previous methods. It
requires a small number of cells (as few as 500), making it suitable for studying rare cell
types or precious samples. Additionally, the protocol is relatively simple and can be com-
pleted in a few hours, compared to the multiple days required for DNase-seq or FAIRE-seq.
The high resolution and sensitivity of ATAC-seq have made it a widely adopted technique
in the field of epigenomics. The introduction of single-cell ATAC-seq (scATAC-seq) in 2015
further expanded the capabilities of this method. By combining ATAC-seq with microflu-
idic technologies or combinatorial indexing, researchers can now profile open chromatin
landscapes at the single-cell level. This advancement allows for the exploration of cellular
heterogeneity, the identification of rare cell types, and the study of dynamic changes in
chromatin accessibility during processes like differentiation or disease progression.

296

27. Transfer Learning in scATAC-seq and scRNA-seq

27.1.1. Protocol

Figure 27.1.

1. Nuclei Isolation and Tn5 Transposition (Figure 27.1 (a))

• Nuclei Isolation: The first step involves isolating nuclei from cells while keeping
the chromatin intact. This ensures that the native chromatin structure is preserved.

• Exposure to Tn5 Transposase: The isolated nuclei are then exposed to Tn5
transposase. The Tn5 enzyme is a hyperactive transposase that simultaneously cuts
DNA and inserts sequencing adapters into accessible chromatin regions. This step is
crucial as it tags open chromatin areas with sequencing adapters, making them ready
for subsequent amplification and sequencing.

• Fragment Isolation and Amplification: After transposition, the resulting DNA
fragments are isolated. These fragments are then amplified to create a library of

297

27. Transfer Learning in scATAC-seq and scRNA-seq

transposed sequences. This library represents the accessible regions of the genome
and is ready for sequencing.

• Sequencing and Identification: The amplified DNA fragments are sequenced
using high-throughput sequencing technologies. The resulting sequences are mapped
to the reference genome to identify accessible chromatin regions, known as ATAC-
seq peaks. These peaks indicate regions where the chromatin is open and potentially
active in gene regulation.

2. Detailed Mechanism of Tn5 Transposition (Figure 27.1 (b))

• Transposition into Native Chromatin: The Tn5 transposase inserts sequenc-
ing adapters into accessible regions of the chromatin. This insertion creates post-
transposition DNA fragments, which include the Tn5-induced nick.

• Initial Extension and Amplification: Following transposition, the DNA frag-
ments undergo an initial extension at 72°C. This is followed by amplification, during
which barcodes and additional adapter components are added. These steps are es-
sential for the preparation of the final ATAC-seq library.

• Purification and Library Construction: The amplified fragments are purified to
construct the final ATAC-seq library. The sites of chromatin accessibility are defined
by the Tn5 insertion, which is marked by specific adapter sequences.

3. Data Analysis and Interpretation (Figure 27.1 (c))

• ATAC-seq Signal and Peaks: The sequenced data is analyzed to generate an
ATAC-seq signal, which shows the read density across the genome. Peaks in the
ATAC-seq signal correspond to regions of open chromatin. The example in the figure
shows differential chromatin accessibility between two cell types (Cell type X and Cell
type Y). Each cell type exhibits unique peaks, indicating distinct regulatory regions.

• Transcription Factor Binding and Gene Expression: The open chromatin
regions often contain binding sites for transcription factors (TFs). For instance, the
motif for a specific TF (TF B) can be identified within a peak. Binding of TF B to its
motif within an enhancer or promoter region can regulate the expression of a nearby
gene (Gene A). The figure illustrates how the binding of TF B to its motif leads to
gene A expression in one cell type but not in another, highlighting the functional
impact of chromatin accessibility on gene regulation.

298

27. Transfer Learning in scATAC-seq and scRNA-seq

Figure 27.2.: ATAC-seq pipelines universally require several common bioinformatic tools.
This figure/table shows tools used in various published ATAC-seq pipelines.
The figure also displays the typical steps in an ATAC-seq analysis.

299

27. Transfer Learning in scATAC-seq and scRNA-seq

27.1.2. Primary data processing

27.1.3. Quality control metrics

In addition to basic read counts and variant quality scores, there are a number of metrics
that are valuable for ATAC-seq (or other regional enrichment experiemnts, like ChIP-seq).
Figure Figure 27.3 shows example plots from the pepatac workflow.

Figure 27.3.: (A) Library complexity plots the read count versus externally calculated dedu-
plicated read counts. Red line is library complexity curve for SRR5427743.
Dashed line represents a completely unique library. Red diamond is the ex-
ternally calculated duplicate read count. (B) TSS enrichment quality control
plot. (C) Fragment length distribution showing characteristic peaks at mono-
, di-, and tri-nucleosomes. (D) Cumulative fraction of reads in annotated
genomic features (cFRiF). Inset: Fraction of reads in those features (FRiF).
(E) Signal tracks including: nucleotide-resolution and smoothed signal tracks.
PEPATAC default peaks are called using the default pipeline settings for
MACS2 (32). (F) Distribution of peaks over the genome. (G) Distribution of
peaks relative to TSS. (H) Distribution of peaks in annotated genomic parti-
tions. Data from SRR5427743.

27.2. ATAC-seq and RNA-seq integration

Single-cell transcriptomics has revolutionized our ability to characterize cell states, but a
deeper biological understanding requires more than just clustering cells. As new meth-
ods emerge to measure different cellular modalities, integrating these datasets becomes a
key challenge in better understanding cellular identity and function. For instance, when
performing scRNA-seq and scATAC-seq experiments on the same biological system, con-
sistently annotating both datasets with the same cell type labels can be difficult due to
the sparsity of scATAC-seq data and the lack of interpretable gene markers in scRNA-seq
data.

300

https://doi.org/10.1093/nargab/lqab101

27. Transfer Learning in scATAC-seq and scRNA-seq

In a 2019 paper by Stuart, Butler, and colleagues, methods were introduced to integrate
scRNA-seq and scATAC-seq datasets from the same biological system. This vignette
demonstrates these methods, including:

Using an annotated scRNA-seq dataset to label cells from an scATAC-seq experiment Co-
visualizing and co-embedding cells from scRNA-seq and scATAC-seq Projecting scATAC-
seq cells onto a UMAP derived from an scRNA-seq experiment

The Signac package, recently developed for analyzing single-cell resolution chromatin
datasets like scATAC-seq, is extensively used in this vignette.

The methods are demonstrated using a publicly available ~12,000 human PBMC ‘multiome’
dataset from 10x Genomics, where scRNA-seq and scATAC-seq profiles were simultaneously
collected from the same cells. For the purpose of this vignette, the datasets are treated as
if they originated from two different experiments and are integrated together. Since they
were originally measured in the same cells, this provides a ground truth for assessing the
accuracy of the integration. It is emphasized that the use of the multiome dataset here
is for demonstration and evaluation purposes, and users should apply these methods to
separately collected scRNA-seq and scATAC-seq datasets.

27.2.1. Setup

BiocManager::install('satijalab/seurat-data')

The following code loads pre-packaged data from the PBMC Multiome dataset from 10x
Genomics.

library(SeuratData)
install the dataset and load requirements
InstallData("pbmcMultiome")

We’ll be using some additional packages. If you get errors here that a package is not
available, you can use BiocManager::install to install the missing package and then
rerun this step.

library(Seurat)
library(Signac)
library(EnsDb.Hsapiens.v86)
library(ggplot2)
library(cowplot)

301

https://www.cell.com/cell/fulltext/S0092-8674(19)30559-8
https://stuartlab.org/signac/
https://support.10xgenomics.com/single-cell-multiome-atac-gex/datasets/1.0.0/pbmc_granulocyte_sorted_10k
https://support.10xgenomics.com/single-cell-multiome-atac-gex/datasets/1.0.0/pbmc_granulocyte_sorted_10k

27. Transfer Learning in scATAC-seq and scRNA-seq

Here, we just load the pre-compiled data. However, if you have your own data, you’d load
these data using special data importers or by reading the parts of your data separately.

load both modalities
pbmc.rna <- LoadData("pbmcMultiome", "pbmc.rna")
pbmc.atac <- LoadData("pbmcMultiome", "pbmc.atac")

(These next details are taken directly from the Seurat vignette, so I’m going to just blindly
follow them.)

pbmc.rna[["RNA"]] <- as(pbmc.rna[["RNA"]], Class = "Assay5")
repeat QC steps performed in the WNN vignette
pbmc.rna <- subset(pbmc.rna, seurat_annotations != "filtered")
pbmc.atac <- subset(pbmc.atac, seurat_annotations != "filtered")

27.2.2. RNA-seq processing

This section just follows the Seurat RNA-seq pipeline. At a high level, the steps include:

1. Normalization: This line normalizes the RNA data. Normalization typically ad-
justs the expression measurements to account for differences in sequencing depth or
other technical variations across cells. In Seurat, the NormalizeData function scales
the gene expression measurements for each cell by the total expression, multiplies by
a scaling factor (default is 10,000), and log-transforms the result.

2. Finding Variable Features: This step identifies the genes that show high variabil-
ity across cells. These highly variable genes are more likely to capture the biological
differences between cells. The FindVariableFeatures function selects these genes
for downstream analysis.

3. Scaling the Data: This line scales the data to have a mean of zero and a variance
of one. This standardization step is important for downstream dimensionality reduc-
tion techniques like PCA (Principal Component Analysis). The ScaleData function
centers and scales the data.

4. Running Principal Component Analysis (PCA): PCA is a dimensionality re-
duction technique that reduces the data to a set of principal components (PCs).
These PCs capture the most significant sources of variation in the data. The RunPCA
function in Seurat performs PCA and stores the results in the object.

302

27. Transfer Learning in scATAC-seq and scRNA-seq

5. Running Uniform Manifold Approximation and Projection (UMAP):
UMAP is another dimensionality reduction technique that is often used for visual-
ization of high-dimensional data. It captures the local and global structure of the
data more effectively than PCA for certain types of data. The RunUMAP function
runs UMAP on the RNA data, using the first 30 principal components (as specified
by dims = 1:30).

Perform standard analysis of each modality independently RNA analysis
pbmc.rna <- NormalizeData(pbmc.rna)
pbmc.rna <- FindVariableFeatures(pbmc.rna)
pbmc.rna <- ScaleData(pbmc.rna)
pbmc.rna <- RunPCA(pbmc.rna)
pbmc.rna <- RunUMAP(pbmc.rna, dims = 1:30)

27.2.3. Annotate ATAC-seq regions

ATAC analysis add gene annotation information
annotations <- GetGRangesFromEnsDb(ensdb = EnsDb.Hsapiens.v86)
seqlevelsStyle(annotations) <- "UCSC"
genome(annotations) <- "hg38"
Annotation(pbmc.atac) <- annotations

And take a look at what we added:

head(Annotation(pbmc.atac))

GRanges object with 6 ranges and 5 metadata columns:
seqnames ranges strand | tx_id gene_name

<Rle> <IRanges> <Rle> | <character> <character>
ENSE00001489430 chrX 276322-276394 + | ENST00000399012 PLCXD1
ENSE00001536003 chrX 276324-276394 + | ENST00000484611 PLCXD1
ENSE00002160563 chrX 276353-276394 + | ENST00000430923 PLCXD1
ENSE00001750899 chrX 281055-281121 + | ENST00000445062 PLCXD1
ENSE00001489388 chrX 281192-281684 + | ENST00000381657 PLCXD1
ENSE00001719251 chrX 281194-281256 + | ENST00000429181 PLCXD1

gene_id gene_biotype type
<character> <character> <factor>

ENSE00001489430 ENSG00000182378 protein_coding exon

303

27. Transfer Learning in scATAC-seq and scRNA-seq

ENSE00001536003 ENSG00000182378 protein_coding exon
ENSE00002160563 ENSG00000182378 protein_coding exon
ENSE00001750899 ENSG00000182378 protein_coding exon
ENSE00001489388 ENSG00000182378 protein_coding exon
ENSE00001719251 ENSG00000182378 protein_coding exon

seqinfo: 25 sequences (1 circular) from hg38 genome

27.2.4. ATAC-seq processing

• Normalization Signac performs term frequency-inverse document frequency (TF-
IDF) normalization. This is a two-step normalization procedure, that both
normalizes across cells to correct for differences in cellular sequencing depth,
and across peaks to give higher values to more rare peaks.

• Feature selection The low dynamic range of scATAC-seq data makes it challenging
to perform variable feature selection, as we do for scRNA-seq. Instead, we can
choose to use only the top n% of features (peaks) for dimensional reduction, or
remove features present in less than n cells with the FindTopFeatures() function.
Here we will use all features, though we have seen very similar results when using
only a subset of features (try setting min.cutoff to ‘q75’ to use the top 25%
all peaks), with faster runtimes. Features used for dimensional reduction are
automatically set as VariableFeatures() for the Seurat object by this function.

• Dimension reduction We next run singular value decomposition (SVD) on the TD-
IDF matrix, using the features (peaks) selected above. This returns a reduced
dimension representation of the object (for users who are more familiar with
scRNA-seq, you can think of this as analogous to the output of PCA).

The process described below for dimensionality reduction combining Term Frequency-
Inverse Document Frequency (TFIDF) and Singular Value Decomposition (SVD) is called
Latent Semantic Indexing (LSI) and was first described here. Suffice it so say that since
our ATAC-seq data are very “sparse

We exclude the first dimension as this is typically correlated with sequencing depth
pbmc.atac <- RunTFIDF(pbmc.atac)
pbmc.atac <- FindTopFeatures(pbmc.atac, min.cutoff = "q0")
pbmc.atac <- RunSVD(pbmc.atac)
pbmc.atac <- RunUMAP(pbmc.atac, reduction = "lsi", dims = 2:30, reduction.name = "umap.atac", reduction.key = "atacUMAP_")

Now, plot the results.

304

https://www.science.org/doi/10.1126/science.aab1601

27. Transfer Learning in scATAC-seq and scRNA-seq

p1 <- DimPlot(pbmc.rna, group.by = "seurat_annotations", label = TRUE) + NoLegend() + ggtitle("RNA")
p2 <- DimPlot(pbmc.atac, group.by = "orig.ident", label = FALSE) + NoLegend() + ggtitle("ATAC")
p1 + p2

CD4 Naive

CD4 TCM
CD8 Naive

CD16 Mono

NK

Treg
CD14 Mono

cDC
CD8 TEM_1

Intermediate BNaive B

Plasma

CD4 TEM
MAIT

Memory B

gdT

pDC

CD8 TEM_2

HSPC
−10

0

10

−10 −5 0 5 10
umap_1

um
ap

_2

RNA

−10

−5

0

5

10

−15 −10 −5 0 5 10
atacUMAP_1

at
ac

U
M

A
P

_2

ATAC

The UMAP visualization reveals the presence of multiple cell groups in human blood. If
you are familiar with scRNA-seq analyses of PBMC, you may recognize the presence of
certain myeloid and lymphoid populations in the scATAC-seq data. However, annotating
and interpreting clusters is more challenging in scATAC-seq data as much less is known
about the functional roles of noncoding genomic regions than is known about protein coding
regions (genes).

We can try to quantify the activity of each gene in the genome by assessing the chromatin
accessibility associated with the gene, and create a new gene activity assay derived from
the scATAC-seq data. Here we will use a simple approach of summing the fragments
intersecting the gene body and promoter region (we also recommend exploring the Cicero
tool, which can accomplish a similar goal, and we provide a vignette showing how to run
Cicero within a Signac workflow here).

To create a gene activity matrix, we extract gene coordinates and extend them to include
the 2 kb upstream region (as promoter accessibility is often correlated with gene expression).
We then count the number of fragments for each cell that map to each of these regions,
using the using the FeatureMatrix() function. These steps are automatically performed by
the GeneActivity() function:

305

27. Transfer Learning in scATAC-seq and scRNA-seq

quantify gene activity
gene.activities <- GeneActivity(pbmc.atac, features = VariableFeatures(pbmc.rna))

add gene activities as a new assay
pbmc.atac[["ACTIVITY"]] <- CreateAssayObject(counts = gene.activities)

normalize gene activities
DefaultAssay(pbmc.atac) <- "ACTIVITY"
pbmc.atac <- NormalizeData(pbmc.atac)
pbmc.atac <- ScaleData(pbmc.atac, features = rownames(pbmc.atac))

Figure 27.4.

To map cell identities from RNA-seq to ATAC-seq, we follow the steps outlined in the
paper by Stuart et al.

In Figure 27.4, (A) Representation of two datasets, reference and query, each of which
originates from a separate single-cell experiment. The two datasets share cells from sim-
ilar biological states, but the query dataset contains a unique population (in black). (B)
We perform canonical correlation analysis, followed by L2 normalization of the canonical
correlation vectors, to project the datasets into a subspace defined by shared correlation

306

https://doi.org/10.1016/j.cell.2019.05.031

27. Transfer Learning in scATAC-seq and scRNA-seq

structure across datasets. (C) In the shared space, we identify pairs of MNNs across refer-
ence and query cells. These should represent cells in a shared biological state across datasets
(gray lines) and serve as anchors to guide dataset integration. In principle, cells in unique
populations should not participate in anchors, but in practice, we observe “incorrect” an-
chors at low frequency (red lines). (D) For each anchor pair, we assign a score based on the
consistency of anchors across the neighborhood structure of each dataset. (E) We utilize
anchors and their scores to compute “correction” vectors for each query cell, transforming
its expression so it can be jointly analyzed as part of an integrated reference.

Identify anchors
transfer.anchors <- FindTransferAnchors(reference = pbmc.rna, query = pbmc.atac, features = VariableFeatures(object = pbmc.rna),

reference.assay = "RNA", query.assay = "ACTIVITY", reduction = "cca")

After identifying anchors, we can transfer annotations from the scRNA-seq dataset onto
the scATAC-seq cells. The annotations are stored in the seurat_annotations field, and
are provided as input to the refdata parameter. The output will contain a matrix with
predictions and confidence scores for each ATAC-seq cell.

celltype.predictions <- TransferData(anchorset = transfer.anchors, refdata = pbmc.rna$seurat_annotations,
weight.reduction = pbmc.atac[["lsi"]], dims = 2:30)

pbmc.atac <- AddMetaData(pbmc.atac, metadata = celltype.predictions)

After performing transfer, the ATAC-seq cells have predicted annotations (transferred from
the scRNA-seq dataset) stored in the predicted.id field. Since these cells were measured
with the multiome kit, we also have a ground-truth annotation that can be used for evalu-
ation. You can see that the predicted and actual annotations are extremely similar.

pbmc.atac$annotation_correct <- pbmc.atac$predicted.id == pbmc.atac$seurat_annotations
p1 <- DimPlot(pbmc.atac, group.by = "predicted.id", label = TRUE) + NoLegend() + ggtitle("Predicted annotation")
p2 <- DimPlot(pbmc.atac, group.by = "seurat_annotations", label = TRUE) + NoLegend() + ggtitle("Ground-truth annotation")
p1 | p2

307

27. Transfer Learning in scATAC-seq and scRNA-seq

CD4 Naive
CD4 TCM

CD8 Naive
CD16 Mono

NK

CD14 MonocDC

Treg
Naive B

Plasma

CD4 TEM
MAITCD8 TEM_1

Memory B

Intermediate B

CD8 TEM_2gdT

pDC

HSPC

−10

−5

0

5

10

−15 −10 −5 0 5 10
atacUMAP_1

at
ac

U
M

A
P

_2
Predicted annotation

CD4 Naive
CD4 TCM

CD8 Naive
CD16 Mono

NK

Treg

CD14 MonocDC

CD8 TEM_1

Intermediate BNaive B

Plasma

CD4 TEM
MAIT

Memory B

gdT

pDC

CD8 TEM_2

HSPC

−10

−5

0

5

10

−15 −10 −5 0 5 10
atacUMAP_1

at
ac

U
M

A
P

_2

Ground−truth annotation

In this example, the annotation for an scATAC-seq profile is correctly predicted via scRNA-
seq integration ~90% of the time. In addition, the prediction.score.max field quantifies the
uncertainty associated with our predicted annotations. We can see that cells that are
correctly annotated are typically associated with high prediction scores (>90%), while
cells that are incorrectly annotated are associated with sharply lower prediction scores
(<50%). Incorrect assignments also tend to reflect closely related cell types (i.e. Interme-
diate vs. Naive B cells).

predictions <- table(pbmc.atac$seurat_annotations, pbmc.atac$predicted.id)
predictions <- predictions/rowSums(predictions) # normalize for number of cells in each cell type
predictions <- as.data.frame(predictions)
p1 <- ggplot(predictions, aes(Var1, Var2, fill = Freq)) + geom_tile() + scale_fill_gradient(name = "Fraction of cells",

low = "#ffffc8", high = "#7d0025") + xlab("Cell type annotation (RNA)") + ylab("Predicted cell type label (ATAC)") +
theme_cowplot() + theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1))

correct <- length(which(pbmc.atac$seurat_annotations == pbmc.atac$predicted.id))
incorrect <- length(which(pbmc.atac$seurat_annotations != pbmc.atac$predicted.id))
data <- FetchData(pbmc.atac, vars = c("prediction.score.max", "annotation_correct"))
p2 <- ggplot(data, aes(prediction.score.max, fill = annotation_correct, colour = annotation_correct)) +

geom_density(alpha = 0.5) + theme_cowplot() + scale_fill_discrete(name = "Annotation Correct",
labels = c(paste0("FALSE (n = ", incorrect, ")"), paste0("TRUE (n = ", correct, ")"))) + scale_color_discrete(name = "Annotation Correct",
labels = c(paste0("FALSE (n = ", incorrect, ")"), paste0("TRUE (n = ", correct, ")"))) + xlab("Prediction Score")

p1 + p2

308

27. Transfer Learning in scATAC-seq and scRNA-seq

CD14 MonoCD16 MonoCD4 NaiveCD4 TCMCD4 TEMCD8 NaiveCD8 TEM_1CD8 TEM_2cDCgdTHSPCIntermediate BMAITMemory BNaive BNKpDCPlasmaTreg

C
D

14
 M

on
o

C
D

16
 M

on
o

C
D

4
N

ai
ve

C
D

4
T

C
M

C
D

4
T

E
M

C
D

8
N

ai
ve

C
D

8
T

E
M

_1
C

D
8

T
E

M
_2

cD
C

gd
T

H
S

P
C

In
te

rm
ed

ia
te

 B
M

A
IT

M
em

or
y

B
N

ai
ve

 BN
K

pD
C

P
la

sm
a

Tr
eg

Cell type annotation (RNA)

P
re

di
ct

ed
 c

el
l t

yp
e

la
be

l (
AT

A
C

)

Fraction of cells

0.00

0.25

0.50

0.75

0

1

2

3

4

0.20.40.60.81.0

Prediction Score
de

ns
ity Annotation Correct

FALSE (n = 1105)
TRUE (n = 9307)

27.3. Transfer learning

In this demonstration, we will explore the concept of transfer learning using Principal
Component Analysis (PCA). Transfer learning allows us to leverage knowledge gained from
one dataset and apply it to another related dataset. We will showcase this by dividing a
dataset into two pieces and projecting the second dataset into the principal components
derived from the first dataset.

27.3.1. Loading the Data

First, let’s load the required libraries:

library(GEOquery)
library(SummarizedExperiment)

We will use the GEOquery package to retrieve a dataset from the Gene Expression Omnibus
(GEO) database and convert it into a SummarizedExperiment object:

309

27. Transfer Learning in scATAC-seq and scRNA-seq

se = as(getGEO("GSE103512")[[1]], "SummarizedExperiment")

27.3.2. Selecting the Most Variable Genes

To focus on the most informative genes, we will select the top 250 most variable genes
based on their standard deviation. Let’s denote the expression matrix as 𝑋, where rows
represent genes and columns represent samples.

get the top 250 most variable genes
variable_rows = order(apply(assays(se)$exprs, 1, sd), decreasing = TRUE)[1:250]

We subset the SummarizedExperiment object to include only the selected genes:

se_subset <- se[variable_rows,]

27.3.3. Splitting the Dataset

Now, we will split the dataset into two pieces, simulating the collection of two separate
datasets with the same genes. This will allow us to demonstrate transfer learning. Let’s
denote the subsets as 𝑋1 and 𝑋2.

split_vector = sample(c(TRUE,FALSE), ncol(se_subset), replace=TRUE)
se_subset_1 = se_subset[,split_vector]
se_subset_2 = se_subset[,!split_vector]

27.3.4. Performing PCA on the First Subset

We perform PCA on the first subset (𝑋1) to obtain the principal components. PCA seeks to
find a set of orthogonal vectors (principal components) that capture the maximum variance
in the data. The principal components are the eigenvectors of the covariance matrix of
𝑋1.

pc_subset1 = prcomp(t(assays(se_subset_1)$exprs))

Let’s visualize the samples in the principal component space, colored by their cancer type:

310

27. Transfer Learning in scATAC-seq and scRNA-seq

plot(pc_subset1$x, col=as.numeric(as.factor(se_subset_1$cancer.type.ch1))+2)

−40 −30 −20 −10 0 10 20

−
20

0
10

30

PC1

P
C

2

27.3.5. Projecting the Second Subset

Now, let’s use the PCA model trained on 𝑋1 to project the samples from 𝑋2 into the
same principal component space. This is where transfer learning comes into play. We can
represent the projection matrix as 𝑃 , which consists of the top principal components from
𝑋1.

pred_subset2 <- predict(pc_subset1,t(assay(se_subset_2,'exprs')))

Mathematically, the projection of 𝑋2 into the principal component space is given by:

𝑋(𝑝)
2 = 𝑋2 ⋅ 𝑃

where 𝑋(𝑝)
2 represents the projected samples from 𝑋2 in the principal component space.

In PCA, the principal components represent a new coordinate system that is aligned with
the directions of maximum variance in the data. The process of finding these principal
components can be thought of as a rotation of the original coordinate system. Consider
the original feature space, where each dimension corresponds to a variable (gene in our
example). The data points (samples) are scattered in this high-dimensional space. PCA
identifies the directions in which the data varies the most, and these directions become
the principal components. Geometrically, the principal components form a new orthog-
onal coordinate system. The first principal component (PC1) aligns with the direction
of maximum variance, the second principal component (PC2) aligns with the direction of

311

27. Transfer Learning in scATAC-seq and scRNA-seq

the second-highest variance (orthogonal to PC1), and so on. When we perform PCA on
the first subset (𝑋1), we obtain the principal components 𝑃 . These principal components
define the rotation matrix that transforms the original coordinate system to the new PCA
coordinate system. Now, let’s consider the “predict” process, where we project the sam-
ples from the second subset (𝑋2) into the principal component space derived from 𝑋1.
Geometrically, this can be understood as follows:

The samples from 𝑋2 are originally represented in the same high-dimensional feature space
as 𝑋1. By using the “predict” function with the PCA model trained on 𝑋1, we are essen-
tially applying the rotation matrix 𝑃 to the samples from 𝑋2. The rotation matrix 𝑃
transforms the coordinates of the samples from 𝑋2 into the new PCA coordinate system
defined by the principal components of 𝑋1. In the PCA coordinate system, the samples
from 𝑋2 are represented by their projections onto the principal components.

Mathematically, the projection of 𝑋2 onto the principal component space is given by:
𝑋(𝑝)

2 = 𝑋2 ⋅ 𝑃 where 𝑋(𝑝)
2 represents the projected samples from 𝑋2 in the principal

component space. Geometrically, this projection can be visualized as follows:

Each sample from 𝑋2 is represented as a point in the original high-dimensional feature
space. The rotation matrix 𝑃 defines the new PCA coordinate system, where the axes are
the principal components. The “predict” process maps each sample from 𝑋2 onto the new
PCA coordinate system by applying the rotation defined by 𝑃 . The projected samples
𝑋(𝑝)

2 represent the coordinates of the samples from 𝑋2 in the PCA coordinate system.

By projecting the samples from 𝑋2 into the PCA space derived from 𝑋1, we can analyze
how well the structure and variability of 𝑋2 align with the principal components learned
from 𝑋1. If the projected samples from 𝑋2 exhibit similar patterns or groupings as the
samples from 𝑋1 in the PCA space, it indicates that the knowledge learned from 𝑋1
effectively captures the underlying structure of 𝑋2.

The “predict” process in PCA can be understood as a rotation of the original coordinate
system to align with the directions of maximum variance, followed by a projection of new
samples onto the rotated coordinate system defined by the principal components.

27.3.6. Comparing the Subsets in the Principal Component Space

Finally, we can compare the distribution of samples from both subsets in the principal
component space:

par(mfrow=c(1,2))
plot(pc_subset1$x, col=as.numeric(as.factor(se_subset_1$cancer.type.ch1))+2)
plot(pred_subset2[,1], pred_subset2[,2], col=as.numeric(as.factor(se_subset_2$cancer.type.ch1))+2)

312

27. Transfer Learning in scATAC-seq and scRNA-seq

−40 −20 0 20

−
20

0
10

30

PC1

P
C

2

−40 −20 0 20

−
20

0
10

30

pred_subset2[, 1]

pr
ed

_s
ub

se
t2

[,
2]

Figure 27.5.: In this plot, we are comparing the subset 1 PCA plot to that produced by
projecting the samples from subset 2 into the first two principle components
from subset 1.

By projecting the samples from 𝑋2 into the principal component space derived from 𝑋1, we
can observe how well the learned principal components capture the structure and variability
of the second dataset. This demonstrates the power of transfer learning, where knowledge
gained from one dataset can be effectively applied to another related dataset.

Mathematically, transfer learning with PCA can be summarized as follows:

1. Perform PCA on 𝑋1 to obtain the principal components 𝑃 .
2. Project 𝑋2 into the principal component space using 𝑋(𝑝)

2 = 𝑋2 ⋅ 𝑃 .
3. Compare the distribution of samples from 𝑋1 and 𝑋2 in the principal component

space.

Transfer learning with PCA allows us to leverage the learned principal components from
one dataset to analyze and understand another related dataset, even when the datasets are
collected separately. This technique can be particularly useful when dealing with limited
sample sizes or when trying to integrate information from multiple sources.

313

References

Bourgon, Richard, Robert Gentleman, and Wolfgang Huber. 2010. “Independent Fil-
tering Increases Detection Power for High-Throughput Experiments.” Proceedings of
the National Academy of Sciences 107 (21): 9546–51. https://doi.org/10.1073/pnas.
0914005107.

Brouwer-Visser, Jurriaan, Wei-Yi Cheng, Anna Bauer-Mehren, Daniela Maisel, Katharina
Lechner, Emilia Andersson, Joel T. Dudley, and Francesca Milletti. 2018. “Regulatory
T-Cell Genes Drive Altered Immune Microenvironment in Adult Solid Cancers and
Allow for Immune Contextual Patient Subtyping.” Cancer Epidemiology, Biomarkers
& Prevention 27 (1): 103–12. https://doi.org/10.1158/1055-9965.EPI-17-0461.

Buenrostro, Jason D, Paul G Giresi, Lisa C Zaba, Howard Y Chang, and William J Green-
leaf. 2013. “Transposition of Native Chromatin for Fast and Sensitive Epigenomic
Profiling of Open Chromatin, DNA-binding Proteins and Nucleosome Position.” Na-
ture Methods 10 (12): 1213–18. https://doi.org/10.1038/nmeth.2688.

Buenrostro, Jason D, Beijing Wu, Howard Y Chang, and William J Greenleaf. 2015.
“ATAC-seq: A Method for Assaying Chromatin Accessibility Genome-Wide.” Current
Protocols in Molecular Biology / Edited by Frederick M. Ausubel ... [Et Al.] 109
(January): 21.29.1–9. https://doi.org/10.1002/0471142727.mb2129s109.

Caron, Stéphane. 2018. “The Grammar of Graphics.” https://dotlayer.org/en/grammar-
of-graphics/.

Center, Pew Research. 2016. “Lifelong Learning and Technology.” Pew Research Center:
Internet, Science & Tech. https://www.pewresearch.org/internet/2016/03/22/lifelong-
learning-and-technology/.

Crawford, Gregory E, Sean Davis, Peter C Scacheri, Gabriel Renaud, Mohamad J Ha-
lawi, Michael R Erdos, Roland Green, Paul S Meltzer, Tyra G Wolfsberg, and Fran-
cis S Collins. 2006. “DNase-chip: A High-Resolution Method to Identify DNase I
Hypersensitive Sites Using Tiled Microarrays.” Nature Methods 3 (7): 503–9. http:
//www.ncbi.nlm.nih.gov/pubmed/16791207?dopt=AbstractPlus.

Crawford, Gregory E, Ingeborg E Holt, James Whittle, Bryn D Webb, Denise Tai, Sean
Davis, Elliott H Margulies, et al. 2006. “Genome-Wide Mapping of DNase Hypersen-
sitive Sites Using Massively Parallel Signature Sequencing (MPSS).” Genome Research
16 (1): 123–31. http://www.ncbi.nlm.nih.gov/pubmed/16344561?dopt=AbstractPlus.

DeRisi, J. L., V. R. Iyer, and P. O. Brown. 1997. “Exploring the Metabolic and Genetic
Control of Gene Expression on a Genomic Scale.” Science (New York, N.Y.) 278 (5338):

314

https://doi.org/10.1073/pnas.0914005107
https://doi.org/10.1073/pnas.0914005107
https://doi.org/10.1158/1055-9965.EPI-17-0461
https://doi.org/10.1038/nmeth.2688
https://doi.org/10.1002/0471142727.mb2129s109
https://dotlayer.org/en/grammar-of-graphics/
https://dotlayer.org/en/grammar-of-graphics/
https://www.pewresearch.org/internet/2016/03/22/lifelong-learning-and-technology/
https://www.pewresearch.org/internet/2016/03/22/lifelong-learning-and-technology/
http://www.ncbi.nlm.nih.gov/pubmed/16791207?dopt=AbstractPlus
http://www.ncbi.nlm.nih.gov/pubmed/16791207?dopt=AbstractPlus
http://www.ncbi.nlm.nih.gov/pubmed/16344561?dopt=AbstractPlus

References

680–86. https://doi.org/10.1126/science.278.5338.680.
Greener, Joe G., Shaun M. Kandathil, Lewis Moffat, and David T. Jones. 2022. “A Guide

to Machine Learning for Biologists.” Nature Reviews Molecular Cell Biology 23 (1):
40–55. https://doi.org/10.1038/s41580-021-00407-0.

Knowles, Malcolm S., Elwood F. Holton, and Richard A. Swanson. 2005. The Adult
Learner: The Definitive Classic in Adult Education and Human Resource Development.
6th ed. Amsterdam ; Boston: Elsevier.

Lawrence, Michael, Wolfgang Huber, Hervé Pagès, Patrick Aboyoun, Marc Carlson, Robert
Gentleman, Martin T Morgan, and Vincent J Carey. 2013. “Software for Computing
and Annotating Genomic Ranges.” PLoS Computational Biology 9 (8): e1003118. https:
//doi.org/10.1371/journal.pcbi.1003118.

Libbrecht, Maxwell W., and William Stafford Noble. 2015. “Machine Learning Appli-
cations in Genetics and Genomics.” Nature Reviews Genetics 16 (6): 321–32. https:
//doi.org/10.1038/nrg3920.

Morgan, Martin, Herve Pages, V Obenchain, and N Hayden. 2016. “Rsamtools: Binary
Alignment (BAM), FASTA, Variant Call (BCF), and Tabix File Import.” R Package
Version 1 (0): 677–89.

Student. 1908. “The Probable Error of a Mean.” Biometrika 6 (1): 1–25. https://doi.org/
10.2307/2331554.

Tsompana, Maria, and Michael J Buck. 2014. “Chromatin Accessibility: A Window into
the Genome.” Epigenetics & Chromatin 7 (1): 33. https://doi.org/10.1186/1756-8935-
7-33.

Wickham, Hadley. 2014. “Tidy Data.” Journal of Statistical Software, Articles 59 (10):
1–23. https://doi.org/10.18637/jss.v059.i10.

315

https://doi.org/10.1126/science.278.5338.680
https://doi.org/10.1038/s41580-021-00407-0
https://doi.org/10.1371/journal.pcbi.1003118
https://doi.org/10.1371/journal.pcbi.1003118
https://doi.org/10.1038/nrg3920
https://doi.org/10.1038/nrg3920
https://doi.org/10.2307/2331554
https://doi.org/10.2307/2331554
https://doi.org/10.1186/1756-8935-7-33
https://doi.org/10.1186/1756-8935-7-33
https://doi.org/10.18637/jss.v059.i10

A. Appendix

A.1. Data Sets

• BRFSS subset
• ALL clinical data
• ALL expression data

A.2. Swirl

The following is from the swirl website.

The swirl R package makes it fun and easy to learn R programming and data
science. If you are new to R, have no fear.

To get started, we need to install a new package into R.

install.packages('swirl')

Once installed, we want to load it into the R workspace so we can use it.

library('swirl')

Finally, to get going, start swirl and follow the instructions.

swirl()

316

BRFSS-subset.csv
ALL-phenoData.csv
ALL-expression.csv
http://swirlstats.com/students.html

B. Additional resources

• Base R Cheat Sheet

317

https://iqss.github.io/dss-workshops/R/Rintro/base-r-cheat-sheet.pdf

Index

RStudio, 5

318

	Preface
	Who is this book for?
	Why this book?
	Adult learners

	Introduction
	Introducing R and RStudio
	Questions
	Learning Objectives
	Introduction
	What is R?
	Why use R?
	Why not use R?
	R License and the Open Source Ideal
	RStudio
	Getting started with RStudio
	The RStudio Interface

	R mechanics
	Learning objectives
	Installing R
	Installing RStudio
	Starting R
	RStudio: A Quick Tour
	Interacting with R
	Expressions
	Assignment

	Rules for Names in R
	Resources for Getting Help

	Up and Running with R
	The R User Interface
	An exercise

	Objects
	Functions
	Sample with Replacement

	Writing Your Own Functions
	The Function Constructor

	Arguments
	Scripts
	Summary

	Packages and more dice
	Packages
	install.packages
	library
	Finding R packages

	Are our dice fair?
	Bonus exercise

	Reading and writing data files
	Introduction
	CSV files
	Writing a CSV file
	Reading a CSV file

	Excel files
	Reading an Excel file
	Writing an Excel file

	Additional options

	Plotting with ggplot2
	Data
	Aesthetics
	Geometries
	Grouping
	Facets
	Labels
	Themes
	Saving a Plot
	References

	R Data Structures
	Chapter overview
	Vectors
	What is a Vector?
	Creating vectors
	Vector Operations
	Logical Vectors
	Logical Operators

	Indexing Vectors
	Named Vectors
	Character Vectors, A.K.A. Strings
	Missing Values, AKA ``NA''
	Exercises

	Matrices
	Creating a matrix
	Accessing elements of a matrix
	Changing values in a matrix
	Calculations on matrix rows and columns
	Exercises
	Data preparation
	Questions

	Data Frames
	Learning goals
	Learning objectives
	Dataset
	Reading in data
	Inspecting data.frames
	Accessing variables (columns) and subsetting
	Some data exploration
	More advanced indexing and subsetting

	Aggregating data
	Creating a data.frame from scratch
	Saving a data.frame

	Factors
	Factors

	Exploratory data analysis
	Introduction to dplyr: mammal sleep dataset
	Learning goals
	Learning objectives
	What is dplyr?
	Why Is dplyr userful?
	Data: Mammals Sleep
	dplyr verbs
	Using the dplyr verbs
	Selecting columns: select()
	Selecting rows: filter()

	``Piping'''' with |>
	Arrange Or Re-order Rows Using arrange()

	Create New Columns Using mutate()
	Create summaries: summarise()

	Grouping data: group_by()

	Case Study: Behavioral Risk Factor Surveillance System
	A Case Study on the Behavioral Risk Factor Surveillance System
	Loading the Dataset
	Inspecting the Data
	Summary Statistics
	Data Visualization
	Analyzing Relationships Between Variables
	Exercises
	Conclusion
	Learn about the data
	Clean data
	Weight in 1990 vs. 2010 Females
	Weight and height in 2010 Males

	statististics
	Working with distribution functions
	pnorm
	dnorm
	qnorm
	rnorm
	IQ scores

	The t-statistic and t-distribution
	Background
	The Z-score and probability
	Small diversion: two-sided pnorm function

	The t-distribution
	p-values based on Z vs t
	Experiment

	Summary of t-distribution vs normal distribution
	t.test
	One-sample
	two-sample
	from a data.frame
	Equivalence to linear model

	Power calculations
	Resources

	K-means clustering
	History of the k-means algorithm
	The k-means algorithm
	Pros and cons of k-means clustering
	An example of k-means clustering
	The data and experimental background

	Getting data
	Preprocessing
	Clustering
	Summary

	Machine Learning
	What is Machine Learning?
	Classes of Machine Learning
	Supervised learning
	Unsupervised learning

	Supervised Learning
	Linear regression
	K-nearest Neighbor

	Penalized regression
	Ridge regression
	LASSO regression
	Elastic Net
	Classification and Regression Trees (CART)
	RandomForest

	Machine Learning 2
	Overview
	Key features of mlr3

	The mlr3 workflow
	The machine learning Task
	The ``Learner'' in Machine Learning

	Setup
	Example: Cancer types
	Understanding the Problem
	Data Preparation
	Feature selection and data cleaning
	Creating the ``task''
	Splitting the data
	Example learners

	Example Predicting age from DNA methylation
	Example learners

	Example: Expression prediction from histone modification data
	The Data
	Create task
	Example learners

	Bioconductor
	Accessing and working with public omics data
	Background
	GEOquery to PCA

	Introduction to SummarizedExperiment
	Anatomy of a SummarizedExperiment
	Assays
	`Row' (regions-of-interest) data
	`Column' (sample) data
	Experiment-wide metadata

	Common operations on SummarizedExperiment
	Subsetting
	Getters and setters
	Range-based operations

	Constructing a SummarizedExperiment

	Ranges Exercises
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4

	ATAC-Seq with Bioconductor
	Overview
	Pre-requisites
	Participation
	R / Bioconductor packages used
	Time outline
	Learning goals
	Learning objectives

	Background
	Informatics overview
	Working with sequencing data in Bioconductor

	Data import and quality control
	Coverage
	Fragment Lengths

	Viewing data in IGV
	Additional work
	Appendix
	Session info
	MACS2

	References
	Transfer Learning in scATAC-seq and scRNA-seq
	Background
	Protocol
	Primary data processing
	Quality control metrics

	ATAC-seq and RNA-seq integration
	Setup
	RNA-seq processing
	Annotate ATAC-seq regions
	ATAC-seq processing

	Transfer learning
	Loading the Data
	Selecting the Most Variable Genes
	Splitting the Dataset
	Performing PCA on the First Subset
	Projecting the Second Subset
	Comparing the Subsets in the Principal Component Space

	References
	Appendices
	Appendix
	Data Sets
	Swirl

	Additional resources

