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1 Introduction

The minfi package provides tools for analyzing Illumina’s Methylation arrays, with a special focus on
the new 450k array for humans. At the moment Illumina’s 27k methylation arrays are not supported.

The tasks addressed in this package include preprocessing, QC assessments, identification of interesting
methylation loci and plotting functionality. Analyzing these types of arrays is ongoing research in ours
and others groups. In general, the analysis of 450k data is not straightforward and we anticipate many
advances in this area in the near future.

The input data to this package are IDAT files, representing two different color channels prior to nor-
malization. It is possible to use Genome Studio files together with the data structures contained in this
package, but in general Genome Studio files are already normalized and we do not recommend this.

Chip design and terminology

The 450k array has a complicated design. What follows is a quick overview.

Each sample is measured on a single array, in two different color channels (red and green). Each array
measures roughly 450,000 CpG positions. Each CpG is associated with two measurements: a methylated
measurement and an “un”-methylated measurement. These two values can be measured in one of two
ways: using a “Type I” design or a “Type II design”. CpGs measured using a Type I design are measured
using a single color, with two different probes in the same color channel providing the methylated and the
unmethylated measurements. CpGs measured using a Type II design are measured using a single probe,
and two different colors provide the methylated and the unmethylated measurements. Practically, this
implies that on this array there is not a one-to-one correspondence between probes and CpG positions.
We have therefore tried to be precise about this and we refer to a “methylation position” (or “CpG”)
when we refer to a single-base genomic locus. The previous generation 27k methlation array uses only
the Type I design.
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In this package we refer to differentially methylated positions (DMPs) by which we mean a single
genomic position that has a different methylation level in two different groups of samples (or conditions).
This is different from differentially methylated regions (DMRs) which imply more that more than one
methylation positions are different between conditions.

Physically, each sample is measured on a single “array”. There are 12 arrays on a single physical “slide”
(organized in a 6 by 2 grid). Slides are organized into “plates” containing at most 8 slides (96 arrays).

Workflow and R data classes

A set of 450k data files will initially be read into an RGChannelSet, representing the raw intensities as
two matrices: one being the green channel and one being the red channel. This is a class which is very
similar to an ExpressionSet or an NChannelSet.

The RGChannelSet is, together with a IlluminaMethylationManifest object, preprocessed into a
MethylSet. The IlluminaMethylationManifest object contains the array design, and describes
how probes and color channels are paired together to measure the methylation level at a specific CpG.
The object also contains information about control probes (also known as QC probes). The MethylSet

contains normalized data and essentially consists of two matrices containing the methylated and the
unmethylated evidence for each CpG. Only the RGChannelSet contains information about the control
probes.

The process described in the previous paragraph is very similar to the paradigm for analyzing Affymetrix
expression arrays using the affy package (an AffyBatch is preprocessed into an ExpressionSet using
array design information stored in a CDF environment (package)).

A MethylSet is the starting point for any post-normalization analysis, such as searching for DMPs or
DMRs.

Getting Started

require(minfi)

require(minfiData)

2 Reading Data

This package supports analysis of IDAT files, containing the summarized bead information.

In our experience, most labs use a “Sample Sheet” CSV file to describe the layout of the experiment.
This is based on a sample sheet file provided by Illumina. Our pipeline assumes the existence of such a
file(s), but it is relatively easy to create such a file using for example Excel, if it is not available.

We use an example dataset with 6 samples, spread across two slides. First we obtain the system path
to the IDAT files; this requires a bit since the data comes from an installed package



baseDir <- system.file("extdata", package = "minfiData")

list.files(baseDir)

## [1] "5723646052" "5723646053" "SampleSheet.csv"

This shows the typical layout of 450k data: each “slide” (containing 12 arrays) is stored in a separate
directory, with a numeric name. The top level directory contains the sample sheet file. Inside the slide
directories we find the IDAT files (and possible a number of JPG images or other files):

list.files(file.path(baseDir, "5723646052"))

## [1] "5723646052_R02C02_Grn.idat" "5723646052_R02C02_Red.idat"

## [3] "5723646052_R04C01_Grn.idat" "5723646052_R04C01_Red.idat"

## [5] "5723646052_R05C02_Grn.idat" "5723646052_R05C02_Red.idat"

The files for each array has another numeric number and consists of a Red and a Grn (Green) IDAT file.
Note that for this example data, each slide contains only 3 arrays and not 12. This was done because
of file size limitations and because we only need 6 arrays to illustrate the package’s functionality.

First we read the sample sheet. We provide a convenience function for reading in this file read.450k.sheet.
This function has a couple of attractive bells and whistles. Let us look at the output

targets <- read.450k.sheet(baseDir)

## [read.450k.sheet] Found the following CSV files:

## [1] "/Library/Frameworks/R.framework/Versions/3.0/Resources/library/minfiData/extdata/SampleSheet.csv"

targets

## Sample_Name Sample_Well Sample_Plate Sample_Group Pool_ID person

## 1 GroupA_3 H5 NA GroupA NA id3

## 2 GroupA_2 D5 NA GroupA NA id2

## 3 GroupB_3 C6 NA GroupB NA id3

## 4 GroupB_1 F7 NA GroupB NA id1

## 5 GroupA_1 G7 NA GroupA NA id1

## 6 GroupB_2 H7 NA GroupB NA id2

## age sex status Array Slide

## 1 83 M normal R02C02 5.724e+09

## 2 58 F normal R04C01 5.724e+09

## 3 83 M cancer R05C02 5.724e+09

## 4 75 F cancer R04C02 5.724e+09

## 5 75 F normal R05C02 5.724e+09

## 6 58 F cancer R06C02 5.724e+09

## Basename

## 1 /Library/Frameworks/R.framework/Versions/3.0/Resources/library/minfiData/extdata/5723646052/5723646052_R02C02

## 2 /Library/Frameworks/R.framework/Versions/3.0/Resources/library/minfiData/extdata/5723646052/5723646052_R04C01

## 3 /Library/Frameworks/R.framework/Versions/3.0/Resources/library/minfiData/extdata/5723646052/5723646052_R05C02

## 4 /Library/Frameworks/R.framework/Versions/3.0/Resources/library/minfiData/extdata/5723646053/5723646053_R04C02

## 5 /Library/Frameworks/R.framework/Versions/3.0/Resources/library/minfiData/extdata/5723646053/5723646053_R05C02

## 6 /Library/Frameworks/R.framework/Versions/3.0/Resources/library/minfiData/extdata/5723646053/5723646053_R06C02



First the output: this is just a data.frame. It contains a column Basename that describes the location
of the IDAT file corresponding to the sample, as well as two columns Array and Slide. In the sample
sheet provided by Illumina, these two columns are named Sentrix Position and Sentrix ID, but we
rename them. We provide more detail on the use of this function below. The Basename column tend
to be too large for display, here it is simplified relative to baseDir:

sub(baseDir, "", targets$Basename)

## [1] "/5723646052/5723646052_R02C02" "/5723646052/5723646052_R04C01"

## [3] "/5723646052/5723646052_R05C02" "/5723646053/5723646053_R04C02"

## [5] "/5723646053/5723646053_R05C02" "/5723646053/5723646053_R06C02"

(This is just for display purposes).

With this data.frame, it is easy to read in the data

RGset <- read.450k.exp(base = baseDir, targets = targets)

Let us look at the associated pheno data, which is really just the information contained in the targets
object above.

show(RGset)

## RGChannelSet (storageMode: lockedEnvironment)

## assayData: 622399 features, 6 samples

## element names: Green, Red

## phenoData

## sampleNames: 5723646052_R02C02 5723646052_R04C01 ...

## 5723646053_R06C02 (6 total)

## varLabels: Sample_Name Sample_Well ... filenames (13 total)

## varMetadata: labelDescription

## Annotation

## array: IlluminaHumanMethylation450k

## annotation: ilmn12.hg19

## [[1]]

## NULL

##

## [[2]]

## NULL

pd <- pData(RGset)

pd

## Sample_Name Sample_Well Sample_Plate Sample_Group

## 5723646052_R02C02 GroupA_3 H5 NA GroupA

## 5723646052_R04C01 GroupA_2 D5 NA GroupA

## 5723646052_R05C02 GroupB_3 C6 NA GroupB

## 5723646053_R04C02 GroupB_1 F7 NA GroupB

## 5723646053_R05C02 GroupA_1 G7 NA GroupA

## 5723646053_R06C02 GroupB_2 H7 NA GroupB



## Pool_ID person age sex status Array Slide

## 5723646052_R02C02 NA id3 83 M normal R02C02 5.724e+09

## 5723646052_R04C01 NA id2 58 F normal R04C01 5.724e+09

## 5723646052_R05C02 NA id3 83 M cancer R05C02 5.724e+09

## 5723646053_R04C02 NA id1 75 F cancer R04C02 5.724e+09

## 5723646053_R05C02 NA id1 75 F normal R05C02 5.724e+09

## 5723646053_R06C02 NA id2 58 F cancer R06C02 5.724e+09

## Basename

## 5723646052_R02C02 /Library/Frameworks/R.framework/Versions/3.0/Resources/library/minfiData/extdata/5723646052/5723646052_R02C02

## 5723646052_R04C01 /Library/Frameworks/R.framework/Versions/3.0/Resources/library/minfiData/extdata/5723646052/5723646052_R04C01

## 5723646052_R05C02 /Library/Frameworks/R.framework/Versions/3.0/Resources/library/minfiData/extdata/5723646052/5723646052_R05C02

## 5723646053_R04C02 /Library/Frameworks/R.framework/Versions/3.0/Resources/library/minfiData/extdata/5723646053/5723646053_R04C02

## 5723646053_R05C02 /Library/Frameworks/R.framework/Versions/3.0/Resources/library/minfiData/extdata/5723646053/5723646053_R05C02

## 5723646053_R06C02 /Library/Frameworks/R.framework/Versions/3.0/Resources/library/minfiData/extdata/5723646053/5723646053_R06C02

## filenames

## 5723646052_R02C02 /Library/Frameworks/R.framework/Versions/3.0/Resources/library/minfiData/extdata/5723646052/5723646052_R02C02

## 5723646052_R04C01 /Library/Frameworks/R.framework/Versions/3.0/Resources/library/minfiData/extdata/5723646052/5723646052_R04C01

## 5723646052_R05C02 /Library/Frameworks/R.framework/Versions/3.0/Resources/library/minfiData/extdata/5723646052/5723646052_R05C02

## 5723646053_R04C02 /Library/Frameworks/R.framework/Versions/3.0/Resources/library/minfiData/extdata/5723646053/5723646053_R04C02

## 5723646053_R05C02 /Library/Frameworks/R.framework/Versions/3.0/Resources/library/minfiData/extdata/5723646053/5723646053_R05C02

## 5723646053_R06C02 /Library/Frameworks/R.framework/Versions/3.0/Resources/library/minfiData/extdata/5723646053/5723646053_R06C02

The read.450k.exp also makes it possible to read in an entire directory or directory tree (with
recursive set to TRUE) by using the function just with the argument base and targets=NULL,
like

RGset2 = read.450k.exp(file.path(baseDir, "5723646052"))

RGset3 = read.450k.exp(baseDir, recursive = TRUE)

3 Quality Control

minfi provides several plots that can be useful for identifying samples with data quality problems.
These functions can display summaries of signal from the array (e.g. density plots) as well as the values
of several types of control probes included on the array. Our understanding of the expected sample
behavior in the QC plots is still evolving and will improve as the number of available samples from the
array increases. A good rule of thumb is to be wary of samples whose behavior deviates from that of
others in the same or similar experiments.

Detection P-values

minfi provides several functions and diagnostic plots to assess quality of the methylation samples. As a
starting point, we suggest to look at the function detectionP() which identies failed positions defined
as both the methylated and unmethylated channel reporting background (noise) signal levels:



detP <- detectionP(RGset)

failed <- detP > 0.01

head(failed, n = 3)

## 5723646052_R02C02 5723646052_R04C01 5723646052_R05C02

## cg00050873 FALSE TRUE FALSE

## cg00212031 FALSE TRUE FALSE

## cg00213748 FALSE TRUE TRUE

## 5723646053_R04C02 5723646053_R05C02 5723646053_R06C02

## cg00050873 TRUE TRUE TRUE

## cg00212031 TRUE TRUE TRUE

## cg00213748 TRUE TRUE TRUE

To see the fraction of failed positions per sample:

colMeans(failed)

## 5723646052_R02C02 5723646052_R04C01 5723646052_R05C02

## 0.0009928 0.0032770 0.0092397

## 5723646053_R04C02 5723646053_R05C02 5723646053_R06C02

## 0.0042244 0.0034561 0.0348374

and to see how many positions failed in ¿ 50% of the samples:

sum(rowMeans(failed) > 0.5)

## [1] 1047

A simple way to quickly check if a sample failed is to look at the log median intensity in both the
methylated and unmethylated channels. When plotting the U channel against the M channel, it has
been observed that good samples cluster together, while failed samples tend to separate and to have
lower median intensities.

But wait, so far we only have green and red intensities. We need the methylated and unmethylated
signals; the function preprocessRaw is done for that. It takes as input a RGChannelSet, convert the
red and green intensities to methylated and unmethylated signals according to the probe design stored
in the manifest object, and returns the converted signals in a new object of class MethylSet.

MSet <- preprocessRaw(RGset)

MSet

## MethylSet (storageMode: lockedEnvironment)

## assayData: 485512 features, 6 samples

## element names: Meth, Unmeth

## phenoData

## sampleNames: 5723646052_R02C02 5723646052_R04C01 ...

## 5723646053_R06C02 (6 total)

## varLabels: Sample_Name Sample_Well ... filenames (13 total)



## varMetadata: labelDescription

## Annotation

## array: IlluminaHumanMethylation450k

## annotation: ilmn12.hg19

## Preprocessing

## Method: Raw (no normalization or bg correction)

## minfi version: 1.8.9

## Manifest version: 0.4.0

To access the methylated and unmethylated intensities:

head(getMeth(MSet), n = 3)

## 5723646052_R02C02 5723646052_R04C01 5723646052_R05C02

## cg00050873 22041 588 20505

## cg00212031 679 569 439

## cg00213748 1620 421 707

## 5723646053_R04C02 5723646053_R05C02 5723646053_R06C02

## cg00050873 404 464 381

## cg00212031 401 468 639

## cg00213748 389 232 695

head(getUnmeth(MSet), n = 3)

## 5723646052_R02C02 5723646052_R04C01 5723646052_R05C02

## cg00050873 1945 433 1012

## cg00212031 6567 300 2689

## cg00213748 384 461 295

## 5723646053_R04C02 5723646053_R05C02 5723646053_R06C02

## cg00050873 341 580 315

## cg00212031 464 753 704

## cg00213748 836 734 759

We will talk more about the MethylSet later. The functions getQC and plotQC are designed to extract
the quality control information from the MethylSet:

qc <- getQC(MSet)

head(qc)

## DataFrame with 6 rows and 2 columns

## mMed uMed

## <numeric> <numeric>

## 5723646052_R02C02 11.70 11.82

## 5723646052_R04C01 11.99 11.95

## 5723646052_R05C02 11.56 12.05

## 5723646053_R04C02 12.07 12.09

## 5723646053_R05C02 12.23 12.08

## 5723646053_R06C02 11.37 11.61

plotQC(qc)



Figure 1: A QC plot can show outlier samples that may be of poor quality

QC Report

The wrapper function qcReport function can be used to produce a PDF QC report of the most common
plots. If provided, the optional sample name and group options will be used to label and color plots.
Samples within a group are assigned the same color. The sample group option can also be used as a
very cursory way to check for batch effects (e.g. by setting it to a processing day variable.)



qcReport(RGset, sampNames = pd$Sample_Name, sampGroups = pd$Sample_Group,

pdf = "qcReport.pdf")

The components of the QC report can also be customized and produced individually as detailed below.

Density plots

The densityPlot function produces density plots of the methylation Beta values for all samples,
typically colored by sample group. While the density plots in Figure 2 are useful for identifying deviant
samples, it is not easy to identify the specific problem sample. If there is a concern about outlier
samples, a useful follow-up is the “bean” plot (Figure 3) that shows each sample in its own section.
While the shape of the distribution for “good” samples will differ from experiment to experiment, many
conditions have methylation profiles characterized by two modes - one with close to 0% methylation,
and a second at close to 100% methylation.

densityPlot(RGset, sampGroups = pd$Sample_Group, main = "Beta", xlab = "Beta")

par(oma = c(2, 10, 1, 1))

densityBeanPlot(RGset, sampGroups = pd$Sample_Group, sampNames = pd$Sample_Name)

Control probe plots

The controlStripPlot function allows plotting of individual control probe types (Figure 4). The
following control probes are available on the array:

BISULFITE CONVERSION I 12

BISULFITE CONVERSION II 4

EXTENSION 4

HYBRIDIZATION 3

NEGATIVE 614

NON-POLYMORPHIC 4

NORM_A 32

NORM_C 61

NORM_G 32

NORM_T 61

SPECIFICITY I 12

SPECIFICITY II 3

STAINING 6

TARGET REMOVAL 2



Figure 2: Beta density plots

controlStripPlot(RGset, controls = "BISULFITE CONVERSION II", sampNames = pd$Sample_Name)



Figure 3: Bean plot of beta values

4 Preprocessing (normalization)

Preprocessing (normalization) takes as input a RGChannelSet and returns a MethylSet.

A number of preprocessing options are available (and we are working on more methods). Each set of
methods are implemented as a function preprocessXXX with XXX being the name of the method. Each
method may have a number of tuning parameters.



Figure 4: Beta stripplot

“Raw” preprocessing means simply converting the Red and the Green channel into a Methylated and
Unmethylated signal

MSet.raw <- preprocessRaw(RGset)

We have also implemented preprocessing choices as available in Genome Studio. These choices follow
the description provided in the Illumina documentation and has been validated by comparing the output



of Genome Studio to the output of these algorithms, and this shows the two approaches to be roughly
equivalent (for a precise statement, see the manual pages).

Genome studio allows for background subtraction (also called background normalization) as well as
something they term control normalization. Both of these are optional and turning both of them off is
equivalent to raw preprocessing (preprocessRaw).

MSet.norm <- preprocessIllumina(RGset, bg.correct = TRUE, normalize = "controls",

reference = 2)

The reference = 2 selects which array to use as “reference” which is an arbitrary array (we are not
sure how Genome Studio makes its choice of reference).

Operating on a MethylSet

Once a MethylSet has been generated, we have a various ways of getting access to the methylation data.
The most basic functions are getMeth and getUnmeth, which returns unlogged methylation channels.
The function getBeta gets “beta”-values which are values between 0 and 1 with 1 interpreted as
very high methylation. If type = "Illumina" (not the default) these are computed using Illumina’s
formula

β =
M

M + U + 100

Finally, we have the “M-values” (not to be confused with the methylation channel obtained by getMeth).
M-values are perhaps an unfortunate terminology, but it seems to be standard in the methylation array
world. These are computed as logit(β) and are obtained by getM.

getMeth(MSet.raw)[1:4, 1:3]

## 5723646052_R02C02 5723646052_R04C01 5723646052_R05C02

## cg00050873 22041 588 20505

## cg00212031 679 569 439

## cg00213748 1620 421 707

## cg00214611 449 614 343

getUnmeth(MSet.raw)[1:4, 1:3]

## 5723646052_R02C02 5723646052_R04C01 5723646052_R05C02

## cg00050873 1945 433 1012

## cg00212031 6567 300 2689

## cg00213748 384 461 295

## cg00214611 4869 183 1655

getBeta(MSet.raw, type = "Illumina")[1:4, 1:3]

## 5723646052_R02C02 5723646052_R04C01 5723646052_R05C02

## cg00050873 0.91510 0.5245 0.9486

## cg00212031 0.09243 0.5872 0.1360

## cg00213748 0.76996 0.4287 0.6416

## cg00214611 0.08287 0.6845 0.1635



getM(MSet.raw)[1:4, 1:3]

## 5723646052_R02C02 5723646052_R04C01 5723646052_R05C02

## cg00050873 3.502 0.4414 4.341

## cg00212031 -3.274 0.9235 -2.615

## cg00213748 2.077 -0.1309 1.261

## cg00214611 -3.439 1.7464 -2.271

MDS plots

After preprocessing the raw data to obtain methylation estimates, Multi-dimensional scaling (MDS)
plots provide a quick way to get a first sense of the relationship between samples. They are similar to
the more familiar PCA plots and display a two-dimensional approximation of sample-to-sample Euclidean
distance. Note that while the plot visualizes the distance in epigenomic profiles between samples, the
absolute positions of the points is not meaningful. One often expects to see greater between-group than
within-group distances (although this clearly depends on the particular experiment). The most variable
locations are used when calculating sample distances, with the number specified by the numPositions

option. Adding sample labels to the MDS plot is a useful way of identifying outliers (figure 5) that
behave differently from their peers.

mdsPlot(MSet.norm, numPositions = 1000, sampGroups = pd$Sample_Group, sampNames = pd$Sample_Name)

The validation of preprocessIllumina

By validation we mean “yielding output that is equivalent to Genome Studio”.

Illumina offers two steps: control normalization and background subtraction (normalization). Using
output from Genome Studio we are certain that the control normalization step is validated, with the
following caveat: control normalization requires the selection of one array among the 12 arrays on a
chip as a reference array. It is currently unclear how Genome Studio selects the reference; if you know
the reference array we can recreate Genome Studio exactly. Background subtraction (normalization)
is almost correct: for 18 out of 24 arrays we see exact equivalence and for the remaining 6 out of 24
arrays we only see small discrepancies (a per-array max difference of 1-4 for unlogged intensities). A
script for doing this is in scripts/GenomeStudio.R.

Subset-quantile within array normalisation (SWAN)

SWAN (subset-quantile within array normalisation) is a new normalization method for Illumina 450k
arrays. What follows is a brief description of the methodology (written by the authors of SWAN):

Technical differences have been demonstrated to exist between the Type I and Type II assay designs
within a single 450K array[? ? ]. Using the SWAN method substantially reduces the technical variability
between the assay designs whilst maintaining the important biological differences. The SWAN method



Figure 5: Multi-dimensional scaling plot

makes the assumption that the number of CpGs within the 50bp probe sequence reflects the underlying
biology of the region being interrogated. Hence, the overall distribution of intensities of probes with the
same number of CpGs in the probe body should be the same regardless of design type. The method then
uses a subset quantile normalization approach to adjust the intensities of each array [? ]. SWAN takes
a MethylSet as input. This can be generated by either preprocessRaw or preprocessIllumina.
Calling the function without specifying a MethylSet uses preprocessRaw. It should be noted that,
in order to create the normalization subset, SWAN randomly selects Infinium I and II probes that have



one, two and three underlying CpGs; as such, we recommend setting a seed (using set.seed)before
using preprocessSWAN to ensure that the normalized intensities will be identical, if the normalization
is repeated.

Mset.swan <- preprocessSWAN(RGsetEx, MsetEx)

The technical differences between Infinium I and II assay designs can result in aberrant beta value
distributions (Figure 6, panel “Raw”). Using SWAN corrects for the technical differences between the
Infinium I and II assay designs and produces a smoother overall beta value distribution (Figure 6, panel
“SWAN”).

par(mfrow = c(1, 2))

plotBetasByType(MsetEx[, 1], main = "Raw")

plotBetasByType(Mset.swan[, 1], main = "SWAN")

Figure 6: The effect of normalizing using SWAN.

5 Finding differentially methylated positions (DMPs)

We are now ready to use the normalized data to identify DMPs, defined as CpG positions where the
methylation level correlates with a phenotype of interest. The phenotype may be categorical (e.g.
cancer vs. normal) or continuous (e.g. blood pressure).

We will create a 20,000 CpG subset of our dataset to speed up the demo:



mset <- MSet.norm[1:20000, ]

Categorical phenotypes

The dmpFinder function uses an F-test to identify positions that are differentially methylated between
(two or more) groups. Tests are performed on logit transformed Beta values as recommended in Pan et
al. Care should be taken if you have zeroes in either the Meth or the Unmeth matrix. One possibility is
to threshold the beta values, so they are always in the interval [ε, 1− ε]. We call ε the betaThreshold

Here we find the differences between GroupA and GroupB.

table(pd$Sample_Group)

##

## GroupA GroupB

## 3 3

M <- getM(mset, type = "beta", betaThreshold = 0.001)

dmp <- dmpFinder(M, pheno = pd$Sample_Group, type = "categorical")

head(dmp)

## intercept f pval qval

## cg10805483 -9.964 1706.1 2.053e-06 0.02640

## cg20386875 -5.434 1445.1 2.860e-06 0.02640

## cg07155336 -5.800 551.0 1.953e-05 0.05148

## cg13059719 -2.506 549.7 1.962e-05 0.05148

## cg08343042 -3.565 506.2 2.311e-05 0.05148

## cg23098069 1.532 497.6 2.391e-05 0.05148

dmpFinder returns a table of CpG positions sorted by differential methylation p-value.

We can use the plotCpG function to plot methylation levels at individual positions:

cpgs <- rownames(dmp)[1:4]

par(mfrow = c(2, 2))

plotCpg(mset, cpg = cpgs, pheno = pd$Sample_Group)



Continuous phenotypes

We can also identify DMPs where the mean methylation level varies with a continuous covariate using
linear regression. Since the sample dataset does not contain any continuous phenotypes we will simulate
one for demonstration purposes:

continuousPheno <- rnorm(nrow(pd))

We now search for DMPs associated with this fake random phenotype.



dmp <- dmpFinder(mset, pheno = continuousPheno, type = "continuous")

## Warning: Partial NA coefficients for 7 probe(s)

dmp[1:3, ]

## intercept beta t pval qval

## cg24397815 -3.351 -0.7331 -25.81 1.338e-05 0.08318

## cg24683414 -3.212 -0.9242 -25.46 1.414e-05 0.08318

## cg09787089 1.535 0.9960 22.36 2.369e-05 0.08318

The beta column gives the change in mean phenotype for each unit increase of methylation. We can
filter the DMP list to exclude positions with a small effect size:

dmp <- subset(dmp, abs(beta) > 1)

The plotCpg function can be used to visualise these continuous DMPs:

cpgs <- rownames(dmp)[1:4]

par(mfrow = c(2, 2))

plotCpg(mset, cpg = cpgs, type = "continuous", pheno = continuousPheno,

xlab = "Phenotype 1")



6 SessionInfo

• R version 3.0.2 Patched (2014-01-22 r64855), x86_64-apple-darwin10.8.0

• Locale: C

• Base packages: base, datasets, grDevices, graphics, grid, methods, parallel, stats, utils



• Other packages: ALL 1.4.14, AnnotationDbi 1.24.0, BSgenome 1.29.1,
BSgenome.Hsapiens.UCSC.hg19 1.3.19, Biobase 2.21.7, BiocBrazil2014 1.0, BiocGenerics 0.7.5,
BiocInstaller 1.12.0, Biostrings 2.29.19, DBI 0.2-7, DESeq2 1.2.9, GEOquery 2.28.0,
GenomicFeatures 1.13.43, GenomicRanges 1.13.45, Gviz 1.5.15, IRanges 1.19.38,
IlluminaHumanMethylation450kanno.ilmn12.hg19 0.2.1,
IlluminaHumanMethylation450kmanifest 0.4.0, KernSmooth 2.23-10, MASS 7.3-29,
RColorBrewer 1.0-5, RCurl 1.95-4.1, RSQLite 0.11.4, Rcpp 0.10.4, RcppArmadillo 0.3.910.0,
Rsamtools 1.13.46, SNPlocs.Hsapiens.dbSNP.20120608 0.99.9, SRAdb 1.15.0,
ShortRead 1.19.13, TxDb.Hsapiens.UCSC.hg19.knownGene 2.10.1, VariantAnnotation 1.7.47,
XVector 0.1.4, bitops 1.0-6, bumphunter 1.1.17, caTools 1.14, devtools 1.3, foreach 1.4.1,
gdata 2.13.2, genefilter 1.43.0, ggplot2 0.9.3.1, gplots 2.11.3, graph 1.39.3, gtools 3.1.0,
iterators 1.0.6, knitr 1.5, lattice 0.20-24, limma 3.17.25, locfit 1.5-9.1, minfi 1.8.9,
minfiData 0.4.2, org.Hs.eg.db 2.10.1, parathyroidSE 1.0.4, pheatmap 0.7.7, plyr 1.8,
randomForest 4.6-7, reactome.db 1.44.0, reshape 0.8.4, rtracklayer 1.21.12

• Loaded via a namespace (and not attached): Hmisc 3.12-2, R.methodsS3 1.5.1, XML 3.95-0.2,
annotate 1.39.0, base64 1.1, beanplot 1.1, biomaRt 2.17.3, biovizBase 1.9.4, cluster 1.14.4,
codetools 0.2-8, colorspace 1.2-3, compiler 3.0.2, dichromat 2.0-0, digest 0.6.3, doRNG 1.5.5,
evaluate 0.5, formatR 0.9, gtable 0.1.2, highr 0.2.1, httr 0.2, hwriter 1.3, illuminaio 0.3.11,
itertools 0.1-1, labeling 0.2, latticeExtra 0.6-26, matrixStats 0.8.12, mclust 4.2, memoise 0.1,
multtest 2.17.0, munsell 0.4.2, nlme 3.1-113, nor1mix 1.1-4, pkgmaker 0.17.4,
preprocessCore 1.23.0, proto 0.3-10, registry 0.2, reshape2 1.2.2, rngtools 1.2.3, rpart 4.1-4,
scales 0.2.3, siggenes 1.35.0, splines 3.0.2, stats4 3.0.2, stringr 0.6.2, survival 2.37-7,
tools 3.0.2, whisker 0.3-2, xtable 1.7-1, zlibbioc 1.7.0


	Introduction
	Chip design and terminology
	Workflow and R data classes
	Getting Started


	Reading Data
	Quality Control
	Detection P-values
	QC Report
	Density plots
	Control probe plots


	Preprocessing (normalization)
	Operating on a MethylSet
	MDS plots
	The validation of preprocessIllumina
	Subset-quantile within array normalisation (SWAN)


	Finding differentially methylated positions (DMPs)
	Categorical phenotypes
	Continuous phenotypes


	SessionInfo

